BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 38312518)

  • 1. Silk fibroin-based inks for
    Agostinacchio F; Fitzpatrick V; Dirè S; Kaplan DL; Motta A
    Bioact Mater; 2024 May; 35():122-134. PubMed ID: 38312518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-Crosslinked Silk Fibroin for 3D Printing.
    Mu X; Sahoo JK; Cebe P; Kaplan DL
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33316890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ 3D Printing: Opportunities with Silk Inks.
    Agostinacchio F; Mu X; Dirè S; Motta A; Kaplan DL
    Trends Biotechnol; 2021 Jul; 39(7):719-730. PubMed ID: 33279280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D freeform printing of silk fibroin.
    Rodriguez MJ; Dixon TA; Cohen E; Huang W; Omenetto FG; Kaplan DL
    Acta Biomater; 2018 Apr; 71():379-387. PubMed ID: 29550442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inkjet Bioprinting of 3D Silk Fibroin Cellular Constructs Using Sacrificial Alginate.
    Compaan AM; Christensen K; Huang Y
    ACS Biomater Sci Eng; 2017 Aug; 3(8):1519-1526. PubMed ID: 33429638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precisely Printable Silk Fibroin/Carboxymethyl Cellulose/Alginate Bioink for 3D Printing.
    Nashchekina Y; Militsina A; Elokhovskiy V; Ivan'kova E; Nashchekin A; Kamalov A; Yudin V
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Printing of Monolithic Proteinaceous Cantilevers Using Regenerated Silk Fibroin.
    Mu X; Gonzalez-Obeso C; Xia Z; Sahoo JK; Li G; Cebe P; Zhang YS; Kaplan DL
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step FRESH Bioprinting of Low-Viscosity Silk Fibroin Inks.
    Sakai S; Morita T
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2589-2597. PubMed ID: 35608818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in bioprinting using silk protein-based bioinks.
    Chakraborty J; Mu X; Pramanick A; Kaplan DL; Ghosh S
    Biomaterials; 2022 Aug; 287():121672. PubMed ID: 35835001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering.
    Hong H; Seo YB; Kim DY; Lee JS; Lee YJ; Lee H; Ajiteru O; Sultan MT; Lee OJ; Kim SH; Park CH
    Biomaterials; 2020 Feb; 232():119679. PubMed ID: 31865191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of Antibacterial, Osteo-Inductor 3D Printed Aerogel-Based Scaffolds by Incorporation of Drug Laden Hollow Mesoporous Silica Microparticles into the Self-Assembled Silk Fibroin Biopolymer.
    Ng P; Pinho AR; Gomes MC; Demidov Y; Krakor E; Grume D; Herb M; Lê K; Mano J; Mathur S; Maleki H
    Macromol Biosci; 2022 Apr; 22(4):e2100442. PubMed ID: 35029037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Digital Light-Processing Bioprinting Using Silk Fibroin-Based Bio-Ink: Recent Advancements in Biomedical Applications.
    Sultan MT; Lee OJ; Lee JS; Park CH
    Biomedicines; 2022 Dec; 10(12):. PubMed ID: 36551978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printable Soy/Silk Hybrid Hydrogels for Tissue Engineering Applications.
    Dorishetty P; Balu R; Gelmi A; Mata JP; Dutta NK; Choudhury NR
    Biomacromolecules; 2021 Sep; 22(9):3668-3678. PubMed ID: 34460237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties.
    Buitrago JO; Patel KD; El-Fiqi A; Lee JH; Kundu B; Lee HH; Kim HW
    Acta Biomater; 2018 Mar; 69():218-233. PubMed ID: 29410166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Study of Silk Fibroin-Based Hydrogels and Their Potential as Material for 3-Dimensional (3D) Printing.
    Pudkon W; Laomeephol C; Damrongsakkul S; Kanokpanont S; Ratanavaraporn J
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in 3D Printing with Protein-Based Inks.
    Mu X; Agostinacchio F; Xiang N; Pei Y; Khan Y; Guo C; Cebe P; Motta A; Kaplan DL
    Prog Polym Sci; 2021 Apr; 115():. PubMed ID: 33776158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
    Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA
    Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomaterial Inks from Peptide-Functionalized Silk Fibers for 3D Printing of Futuristic Wound-Healing and Sensing Materials.
    Ceccarini MR; Palazzi V; Salvati R; Chiesa I; De Maria C; Bonafoni S; Mezzanotte P; Codini M; Pacini L; Errante F; Rovero P; Morabito A; Beccari T; Roselli L; Valentini L
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting.
    Kim SH; Kim DY; Lim TH; Park CH
    Adv Exp Med Biol; 2020; 1249():53-66. PubMed ID: 32602090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.