These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38313550)

  • 1. Enhancing Visible-Light Absorption of 2D Carbon Nitride by Constructing 2D/2D van der Waals Heterojunctions of Carbon Nitride/Nitrogen-Superdoped Graphene.
    Xu Y; Di M; Liu J; Li Z; Wang Y; Tang N
    ACS Omega; 2024 Jan; 9(4):4804-4810. PubMed ID: 38313550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing Heterogeneous Photocatalysts Based on Carbon Nitride Nanosheets and Graphene Quantum Dots for Highly Efficient Photocatalytic Hydrogen Generation.
    Wang Y; Zeng C; Liu Y; Yang D; Zhang Y; Ren Z; Li Q; Hao J; Hu W; Wu Y; Yang R
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing van der Waals Heterogeneous Photocatalysts Based on Atomically Thin Carbon Nitride Sheets and Graphdiyne for Highly Efficient Photocatalytic Conversion of CO
    Wang Y; Zhang Y; Wang Y; Zeng C; Sun M; Yang D; Cao K; Pan H; Wu Y; Liu H; Yang R
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40629-40637. PubMed ID: 34415734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of PCN-222 and Atomically Thin 2D CNs Van Der Waals Heterojunction for Enhanced Visible Light Photocatalytic Hydrogen Production.
    Wu L; Mi X; Wang S; Huang C; Zhang Y; Wang YM; Wang Y
    Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing Solar Absorption of Atomically Thin 2D Carbon Nitride Sheets for Enhanced Visible-Light Photocatalysis.
    Wang Y; Du P; Pan H; Fu L; Zhang Y; Chen J; Du Y; Tang N; Liu G
    Adv Mater; 2019 Oct; 31(40):e1807540. PubMed ID: 31441154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing CoPC/g-C
    Huang Z; Long X; Liu M; Li X; Du Y; Liu Q; Chen Y; Guo S; Chen R
    J Colloid Interface Sci; 2024 Jan; 653(Pt B):1293-1303. PubMed ID: 37797505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Free 2D/2D van der Waals Heterojunction Based on Covalent Organic Frameworks for Highly Efficient Solar Energy Catalysis.
    Yan G; Sun X; Zhang Y; Li H; Huang H; Jia B; Su D; Ma T
    Nanomicro Lett; 2023 May; 15(1):132. PubMed ID: 37211571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A strategy for boosting photovoltaic performance based on a two-dimensional ZrSSe/HfSSe van der Waals heterostructure.
    Han K; Guo D; Han Y; Zhao P; Liang Y; Wang Q
    Phys Chem Chem Phys; 2024 Mar; 26(10):8539-8546. PubMed ID: 38412426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of S-Scheme 2D/2D Crystalline Carbon Nitride/BiOIO
    Kong X; Cao L; Shi Y; Chen Z; Shi W; Du X
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-plane thermoelectric properties of graphene/
    Makumi SW; Bem D; Musila N; Foss C; Aksamija Z
    J Phys Condens Matter; 2023 Feb; 35(15):. PubMed ID: 36731173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/Hexagonal Boron Nitride Heterostructures.
    Heilmann M; Prikhodko AS; Hanke M; Sabelfeld A; Borgardt NI; Lopes JMJ
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8897-8907. PubMed ID: 31971775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photogenerated-Carrier Separation and Transfer in Two-Dimensional Janus Transition Metal Dichalcogenides and Graphene van der Waals Sandwich Heterojunction Photovoltaic Cells.
    Liu X; Gao P; Hu W; Yang J
    J Phys Chem Lett; 2020 May; 11(10):4070-4079. PubMed ID: 32354217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures.
    Hong X; Kim J; Shi SF; Zhang Y; Jin C; Sun Y; Tongay S; Wu J; Zhang Y; Wang F
    Nat Nanotechnol; 2014 Sep; 9(9):682-6. PubMed ID: 25150718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. van der Waals Heterojunction between a Bottom-Up Grown Doped Graphene Quantum Dot and Graphene for Photoelectrochemical Water Splitting.
    Yan Y; Zhai D; Liu Y; Gong J; Chen J; Zan P; Zeng Z; Li S; Huang W; Chen P
    ACS Nano; 2020 Jan; 14(1):1185-1195. PubMed ID: 31934740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional AlN/g-CNs van der Waals type-II heterojunction for water splitting.
    Xu L; Tao J; Xiao B; Xiong F; Ma Z; Zeng J; Huang X; Tang S; Wang LL
    Phys Chem Chem Phys; 2023 Feb; 25(5):3969-3978. PubMed ID: 36648388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomically thin p-n junctions with van der Waals heterointerfaces.
    Lee CH; Lee GH; van der Zande AM; Chen W; Li Y; Han M; Cui X; Arefe G; Nuckolls C; Heinz TF; Guo J; Hone J; Kim P
    Nat Nanotechnol; 2014 Sep; 9(9):676-81. PubMed ID: 25108809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A first-principles study of two-dimensional NbSe
    Yeoh KH; Chew KH; Yoon TL; Chang YHR; Ong DS
    Phys Chem Chem Phys; 2021 Nov; 23(42):24222-24232. PubMed ID: 34668497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing C
    Mukherjee M; Jana R; Datta A
    Phys Chem Chem Phys; 2021 Feb; 23(6):3925-3933. PubMed ID: 33543193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenyl-Bridged Graphitic Carbon Nitride with a Porous and Hollow Sphere Structure to Enhance Dissociation of Photogenerated Charge Carriers and Visible-Light-Driven H
    Chen Y; Qu Y; Zhou X; Li D; Xu P; Sun J
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41527-41537. PubMed ID: 32812739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting the Visible-Light Photoactivity of BiOCl/BiVO
    Zhu M; Liu Q; Chen W; Yin Y; Ge L; Li H; Wang K
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38832-38841. PubMed ID: 29043765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.