These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38314315)

  • 21. Identifying conservation and restoration priorities for degraded coastal wetland vegetations: Integrating species distribution model and GeoDetector.
    Lin J; He S; Liu X; Huang Z; Li M; Chen B; Hu W
    Sci Total Environ; 2024 Jan; 906():167491. PubMed ID: 37778559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping and exploring variation in post-fire vegetation recovery following mixed severity wildfire using airborne LiDAR.
    Gordon CE; Price OF; Tasker EM
    Ecol Appl; 2017 Jul; 27(5):1618-1632. PubMed ID: 28390084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endangered plant species under differing anthropogenic interventions: how to preserve
    Kim S; Park HJ; Lee CW; Kim NY; Hwang JE; Lee BD; Park HB; An J; Baek J
    PeerJ; 2022; 10():e14050. PubMed ID: 36193426
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High resolution lidar data shed light on inter-island translocation of endangered bird species in the Hawaiian Islands.
    Gallerani EM; Burgett J; Vaughn N; Berio Fortini L; Fricker GA; Mounce H; Gillespie TW; Crampton L; Knapp D; Hite JM; Gilb R
    Ecol Appl; 2023 Jul; 33(5):e2889. PubMed ID: 37212375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimating above-ground carbon biomass in a newly restored coastal plain wetland using remote sensing.
    Riegel JB; Bernhardt E; Swenson J
    PLoS One; 2013; 8(6):e68251. PubMed ID: 23840837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Marine fauna sort at fine resolution in an ecotone of shifting wetland foundation species.
    Johnston CA; Gruner DS
    Ecology; 2018 Nov; 99(11):2546-2557. PubMed ID: 30168591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.
    Gillan JK; Karl JW; Duniway M; Elaksher A
    J Environ Manage; 2014 Nov; 144():226-35. PubMed ID: 24973611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vegetation structure from LiDAR explains the local richness of birds across Denmark.
    Davison CW; Assmann JJ; Normand S; Rahbek C; Morueta-Holme N
    J Anim Ecol; 2023 Jul; 92(7):1332-1344. PubMed ID: 37269186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of long-term estuarine vegetation changes through Landsat imagery.
    Lopes CL; Mendes R; Caçador I; Dias JM
    Sci Total Environ; 2019 Feb; 653():512-522. PubMed ID: 30414581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. King rail (
    Brewer DE; Gehring TM; Garcia MM; Shirkey BT; Simpson JW; Fournier AMV
    Ecol Evol; 2023 Apr; 13(4):e10043. PubMed ID: 37122771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved mapping of coastal salt marsh habitat change at Barnegat Bay (NJ, USA) using object-based image analysis of high-resolution aerial imagery.
    Krause JR; Oczkowski AJ; Watson EB
    Remote Sens Appl; 2023 Jan; 29():1-11. PubMed ID: 37235064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Burrowing and Anti-Predator Requirements Determine the Microhabitat Selection of Himalayan Marmot in Zoige Wetland.
    Guo C; Gao S; Zhou S; Zhang L; Xiang Z
    Zoolog Sci; 2020 Dec; 37(6):554-562. PubMed ID: 33269871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Food web analysis of southern California coastal wetlands using multiple stable isotopes.
    Kwak TJ; Zedler JB
    Oecologia; 1997 Apr; 110(2):262-277. PubMed ID: 28307434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bridging gaps: On the performance of airborne LiDAR to model wood mouse-habitat structure relationships in pine forests.
    Jaime-González C; Acebes P; Mateos A; Mezquida ET
    PLoS One; 2017; 12(8):e0182451. PubMed ID: 28771566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne LiDAR data in the City of St. John's, NL, Canada.
    Mahdianpari M; Granger JE; Mohammadimanesh F; Warren S; Puestow T; Salehi B; Brisco B
    J Environ Manage; 2021 Feb; 280():111676. PubMed ID: 33246750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying important military installations for continental-scale conservation of marsh bird breeding habitat.
    Stevens BS; Conway CJ
    J Environ Manage; 2019 Dec; 252():109664. PubMed ID: 31610450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying the Impact of Hydrological Connectivity on Salt Marsh Vegetation in the Liao River Delta Wetland.
    Chen K; Qu L; Cong P; Liang S; Sun Z; Han J
    Wetlands (Wilmington); 2023; 43(5):45. PubMed ID: 37193562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating regional resiliency of coastal wetlands to sea level rise through hypsometry-based modeling.
    Doughty CL; Cavanaugh KC; Ambrose RF; Stein ED
    Glob Chang Biol; 2019 Jan; 25(1):78-92. PubMed ID: 30378214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shrub changes with proximity to anthropogenic disturbance in boreal wetlands determined using bi-temporal airborne lidar in the Oil Sands Region, Alberta Canada.
    Chasmer L; Lima EM; Mahoney C; Hopkinson C; Montgomery J; Cobbaert D
    Sci Total Environ; 2021 Aug; 780():146638. PubMed ID: 34030337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine.
    Wua Q; Lane CR; Li X; Zhao K; Zhou Y; Clinton N; DeVries B; Golden HE; Lang MW
    Remote Sens Environ; 2019 Jul; 228():1-13. PubMed ID: 33776151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.