These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 383144)
21. Effect of the removal of the Y base on the conformation of yeast tRNA. Kearns DR; Wong KL; Wong YP Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3843-6. PubMed ID: 4590172 [TBL] [Abstract][Full Text] [Related]
22. A novel conformational change of the anticodon region of tRNAPhe (yeast). Urbanke C; Maass G Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565 [TBL] [Abstract][Full Text] [Related]
23. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Kim SH; Quigley GJ; Suddath FL; McPherson A; Sneden D; Kim JJ; Weinzierl J; Rich A Science; 1973 Jan; 179(4070):285-8. PubMed ID: 4566654 [TBL] [Abstract][Full Text] [Related]
24. Nuclear Overhauser effect in specifically deuterated macromolecules: NMR assay for unusual base pairing in transfer RNA. Sánchez V; Redfield AG; Johnston PD; Tropp J Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5659-62. PubMed ID: 7003592 [TBL] [Abstract][Full Text] [Related]
25. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz. Heerschap A; Haasnoot CA; Hilbers CW Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268 [TBL] [Abstract][Full Text] [Related]
26. An NMR study of the exchange rates for protons involved in the secondary and tertiary structure of yeast tRNA Phe. Johnston PD; Redfield AG Nucleic Acids Res; 1977 Oct; 4(10):3599-615. PubMed ID: 337239 [TBL] [Abstract][Full Text] [Related]
27. 31P magnetic resonance of tRNA. Guéron M; Shulman RG Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3482-5. PubMed ID: 242005 [TBL] [Abstract][Full Text] [Related]
28. Proton magnetic resonance studies on the conformation of the hexanucleotide, GmpApApYpApsiP, and Related fragments from the anticodong loop of baker's yeast phenylalanine transfer ribonucleic acid. Kan LS; Ts'o PO; von der Haar F; Sprinzl M; Cramer F Biochemistry; 1975 Jul; 14(14):3278-91. PubMed ID: 1096939 [TBL] [Abstract][Full Text] [Related]
29. Nuclear magnetic resonance studies on the tertiary folding of transfer ribonucleic acid: assignment of the 7-methylguanosine resonance. Hurd RE; Reid BR Biochemistry; 1979 Sep; 18(18):4017-24. PubMed ID: 385042 [TBL] [Abstract][Full Text] [Related]
30. Assignments of 31P NMR resonances in oligodeoxyribonucleotides: origin of sequence-specific variations in the deoxyribose phosphate backbone conformation and the 31P chemical shifts of double-helical nucleic acids. Gorenstein DG; Schroeder SA; Fu JM; Metz JT; Roongta V; Jones CR Biochemistry; 1988 Sep; 27(19):7223-37. PubMed ID: 3207672 [TBL] [Abstract][Full Text] [Related]
31. Assignment of imino proton spectra of yeast phenylalanine transfer ribonucleic acid. Roy S; Redfield AG Biochemistry; 1983 Mar; 22(6):1386-90. PubMed ID: 6301547 [TBL] [Abstract][Full Text] [Related]
32. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of an oligodeoxyribonucleotide duplex refined via a hybrid relaxation matrix procedure. Powers R; Jones CR; Gorenstein DG J Biomol Struct Dyn; 1990 Oct; 8(2):253-94. PubMed ID: 2268403 [TBL] [Abstract][Full Text] [Related]
33. Two-dimensional 1H and 31P NMR spectra and restrained molecular dynamics structure of a mismatched GA decamer oligodeoxyribonucleotide duplex. Nikonowicz EP; Gorenstein DG Biochemistry; 1990 Sep; 29(37):8845-58. PubMed ID: 2271561 [TBL] [Abstract][Full Text] [Related]
34. Proton nuclear magnetic resonance study of the effect of pH on tRNA structure. Steinmetz-Kayne M; Benigno R; Kallenbach NR Biochemistry; 1977 May; 16(10):1064-73. PubMed ID: 16638 [TBL] [Abstract][Full Text] [Related]
35. Assignment of the magnetic resonances of the imino protons and methyl protons of Bombyx mori tRNA(GlyGCC) and the effect of ion binding on its structure. Amano M; Kawakami M Eur J Biochem; 1992 Dec; 210(3):671-81. PubMed ID: 1483452 [TBL] [Abstract][Full Text] [Related]
36. A distinctive RNA fold: the solution structure of an analogue of the yeast tRNAPhe T Psi C domain. Koshlap KM; Guenther R; Sochacka E; Malkiewicz A; Agris PF Biochemistry; 1999 Jul; 38(27):8647-56. PubMed ID: 10393540 [TBL] [Abstract][Full Text] [Related]
37. Nuclear magnetic resonance studies on transfer ribonucleic acid: assignment of AU tertiary resonances. Hurd RE; Reid BR Biochemistry; 1979 Sep; 18(18):4005-11. PubMed ID: 385040 [TBL] [Abstract][Full Text] [Related]
38. Assignment of phosphorus-31 and nonexchangeable proton resonances in a symmetrical 14 base pair lac pseudooperator DNA fragment. Schroeder SA; Fu JM; Jones CR; Gorenstein DG Biochemistry; 1987 Jun; 26(13):3812-21. PubMed ID: 2820476 [TBL] [Abstract][Full Text] [Related]
39. Optically detected magnetic resonance of Escherichia coli glutamic acid specific transfer ribonucleic acid and its anticodon-anticodon complex with yeast phenylalanine-specific transfer ribonucleic acid. Taherian MR; Luk KF; Maki AH Biochemistry; 1984 Dec; 23(26):6614-8. PubMed ID: 6085008 [TBL] [Abstract][Full Text] [Related]
40. Nuclear magnetic resonance and nuclear Overhauser effect study of yeast phenylalanine transfer ribonucleic acid imino protons. Johnston PD; Redfield AG Biochemistry; 1981 Mar; 20(5):1147-56. PubMed ID: 7013786 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]