These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38314442)

  • 1. Interactions of drosophila cryptochrome.
    Ozcelik G; Koca MS; Sunbul B; Yilmaz-Atay F; Demirhan F; Tiryaki B; Cilenk K; Selvi S; Ozturk N
    Photochem Photobiol; 2024; 100(5):1339-1358. PubMed ID: 38314442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-dependent reactions of animal circadian photoreceptor cryptochrome.
    Ozturk N
    FEBS J; 2022 Nov; 289(21):6622-6639. PubMed ID: 34750956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoactivation of
    Berntsson O; Rodriguez R; Henry L; Panman MR; Hughes AJ; Einholz C; Weber S; Ihalainen JA; Henning R; Kosheleva I; Schleicher E; Westenhoff S
    Sci Adv; 2019 Jul; 5(7):eaaw1531. PubMed ID: 31328161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mosquito cryptochromes expressed in Drosophila confer species-specific behavioral light responses.
    Au DD; Foden AJ; Park SJ; Nguyen TH; Liu JC; Tran MD; Jaime OG; Yu Z; Holmes TC
    Curr Biol; 2022 Sep; 32(17):3731-3744.e4. PubMed ID: 35914532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blue-light induced accumulation of reactive oxygen species is a consequence of the Drosophila cryptochrome photocycle.
    Arthaut LD; Jourdan N; Mteyrek A; Procopio M; El-Esawi M; d'Harlingue A; Bouchet PE; Witczak J; Ritz T; Klarsfeld A; Birman S; Usselman RJ; Hoecker U; Martino CF; Ahmad M
    PLoS One; 2017; 12(3):e0171836. PubMed ID: 28296892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore.
    Ozturk N; Selby CP; Zhong D; Sancar A
    J Biol Chem; 2014 Feb; 289(8):4634-42. PubMed ID: 24379403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless.
    Peschel N; Chen KF; Szabo G; Stanewsky R
    Curr Biol; 2009 Feb; 19(3):241-7. PubMed ID: 19185492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila CRY Entrains Clocks in Body Tissues to Light and Maintains Passive Membrane Properties in a Non-clock Body Tissue Independent of Light.
    Agrawal P; Houl JH; Gunawardhana KL; Liu T; Zhou J; Zoran MJ; Hardin PE
    Curr Biol; 2017 Aug; 27(16):2431-2441.e3. PubMed ID: 28781048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-dependence of signaling-state formation in Drosophila cryptochrome.
    Einholz C; Nohr D; Rodriguez R; Topitsch A; Kern M; Goldmann J; Chileshe E; Okasha M; Weber S; Schleicher E
    Arch Biochem Biophys; 2021 Mar; 700():108787. PubMed ID: 33545100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Veela defines a molecular link between Cryptochrome and Timeless in the light-input pathway to Drosophila's circadian clock.
    Peschel N; Veleri S; Stanewsky R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17313-8. PubMed ID: 17068124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex.
    Ozturk N; VanVickle-Chavez SJ; Akileswaran L; Van Gelder RN; Sancar A
    Proc Natl Acad Sci U S A; 2013 Mar; 110(13):4980-5. PubMed ID: 23479607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in active site histidine hydrogen bonding trigger cryptochrome activation.
    Ganguly A; Manahan CC; Top D; Yee EF; Lin C; Young MW; Thiel W; Crane BR
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):10073-8. PubMed ID: 27551082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS.
    Koh K; Zheng X; Sehgal A
    Science; 2006 Jun; 312(5781):1809-12. PubMed ID: 16794082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic insight into light-dependent recognition of Timeless by Drosophila Cryptochrome.
    Lin C; Schneps CM; Chandrasekaran S; Ganguly A; Crane BR
    Structure; 2022 Jun; 30(6):851-861.e5. PubMed ID: 35397203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavin reduction activates Drosophila cryptochrome.
    Vaidya AT; Top D; Manahan CC; Tokuda JM; Zhang S; Pollack L; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20455-60. PubMed ID: 24297896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptochrome-Timeless structure reveals circadian clock timing mechanisms.
    Lin C; Feng S; DeOliveira CC; Crane BR
    Nature; 2023 May; 617(7959):194-199. PubMed ID: 37100907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sacrificial inactivation of the blue-light photosensor cryptochrome from Drosophila melanogaster.
    Kutta RJ; Archipowa N; Scrutton NS
    Phys Chem Chem Phys; 2018 Nov; 20(45):28767-28776. PubMed ID: 30417904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction.
    Lin C; Top D; Manahan CC; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3822-3827. PubMed ID: 29581265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling Drosophila melanogaster Cryptochrome Light Activation and Oxidation of the Kvβ Subunit Hyperkinetic NADPH Cofactor.
    Hong G; Pachter R; Ritz T
    J Phys Chem B; 2018 Jun; 122(25):6503-6510. PubMed ID: 29847128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptochrome-dependent and -independent circadian entrainment circuits in Drosophila.
    Yoshii T; Hermann-Luibl C; Kistenpfennig C; Schmid B; Tomioka K; Helfrich-Förster C
    J Neurosci; 2015 Apr; 35(15):6131-41. PubMed ID: 25878285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.