BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38314497)

  • 1. The layer-specific biomechanical properties of dissecting ascending aortic aneurysm (Stanford type A of dissection).
    Kozuń M; Kaczorowski M; Hałoń A
    Acta Bioeng Biomech; 2022; 24(2):3-14. PubMed ID: 38314497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dissection on the mechanical properties of human ascending aorta and human ascending aorta aneurysm.
    Kozuń M; Płonek T; Jasiński M; Filipiak J
    Acta Bioeng Biomech; 2019; 21(2):127-134. PubMed ID: 31741471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical characterization of a chronic type a dissected human aorta.
    Amabili M; Arena GO; Balasubramanian P; Breslavsky ID; Cartier R; Ferrari G; Holzapfel GA; Kassab A; Mongrain R
    J Biomech; 2020 Sep; 110():109978. PubMed ID: 32827785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of regional/layer differences in failure properties and thickness as important biomechanical factors responsible for the initiation of aortic dissections.
    Manopoulos C; Karathanasis I; Kouerinis I; Angouras DC; Lazaris A; Tsangaris S; Sokolis DP
    J Biomech; 2018 Oct; 80():102-110. PubMed ID: 30195853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta.
    Koullias G; Modak R; Tranquilli M; Korkolis DP; Barash P; Elefteriades JA
    J Thorac Cardiovasc Surg; 2005 Sep; 130(3):677-83. PubMed ID: 16153912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biaxial tensile testing system for measuring mechanical properties of both sides of biological tissues.
    Takada J; Hamada K; Zhu X; Tsuboko Y; Iwasaki K
    J Mech Behav Biomed Mater; 2023 Oct; 146():106028. PubMed ID: 37531771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is location a significant parameter in the layer dependent dissection properties of the aorta?
    Ríos-Ruiz I; Martínez MÁ; Peña E
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1887-1901. PubMed ID: 36057051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional biomechanical and failure properties of healthy human ascending aorta and root.
    Xuan Y; Wisneski AD; Wang Z; Lum M; Kumar S; Pallone J; Flores N; Inman J; Lai L; Lin J; Guccione JM; Tseng EE; Ge L
    J Mech Behav Biomed Mater; 2021 Nov; 123():104705. PubMed ID: 34454207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta.
    Pasta S; Phillippi JA; Gleason TG; Vorp DA
    J Thorac Cardiovasc Surg; 2012 Feb; 143(2):460-7. PubMed ID: 21868041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic characterization of human descending thoracic aortas under cyclic load.
    Franchini G; Breslavsky ID; Holzapfel GA; Amabili M
    Acta Biomater; 2021 Aug; 130():291-307. PubMed ID: 34082105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of aneurysm on the directional, regional, and layer distribution of residual strains in ascending thoracic aorta.
    Sokolis DP
    J Mech Behav Biomed Mater; 2015 Jun; 46():229-43. PubMed ID: 25828156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The combined impact of mechanical factors on the wall stress of the human ascending aorta - a finite elements study.
    Plonek T; Zak M; Burzynska K; Rylski B; Gozdzik A; Kustrzycki W; Beyersdorf F; Jasinski M; Filipiak J
    BMC Cardiovasc Disord; 2017 Dec; 17(1):297. PubMed ID: 29262774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical properties of the aortic root are distinct from those of the ascending aorta in both normal and aneurysmal states.
    Chung JC; Eliathamby D; Seo H; Fan CP; Islam R; Deol K; Simmons CA; Ouzounian M
    JTCVS Open; 2023 Dec; 16():38-47. PubMed ID: 38204645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta.
    Sokolis DP
    J Biomech; 2019 Nov; 96():109335. PubMed ID: 31540821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Residual strains in ascending thoracic aortic aneurysms: The effect of valve type, layer, and circumferential quadrant.
    Sokolis DP; Ch Markidi D; Iliopoulos DC; Kourkoulis SK
    J Biomech; 2023 Jan; 147():111432. PubMed ID: 36634401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural and mechanical characterization of the layers of human descending thoracic aortas.
    Amabili M; Asgari M; Breslavsky ID; Franchini G; Giovanniello F; Holzapfel GA
    Acta Biomater; 2021 Oct; 134():401-421. PubMed ID: 34303867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of layer heterogeneity on the biomechanical properties of ascending thoracic aortic aneurysms.
    Sokolis DP; Kritharis EP; Iliopoulos DC
    Med Biol Eng Comput; 2012 Dec; 50(12):1227-37. PubMed ID: 22926448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical properties of human ascending thoracic aortic aneurysms.
    Azadani AN; Chitsaz S; Mannion A; Mookhoek A; Wisneski A; Guccione JM; Hope MD; Ge L; Tseng EE
    Ann Thorac Surg; 2013 Jul; 96(1):50-8. PubMed ID: 23731613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obtaining the biomechanical behavior of ascending aortic aneurysm via the use of novel speckle tracking echocardiography.
    Alreshidan M; Shahmansouri N; Chung J; Lash V; Emmott A; Leask RL; Lachapelle K
    J Thorac Cardiovasc Surg; 2017 Apr; 153(4):781-788. PubMed ID: 28094007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical characterisation of human ascending aorta dissection.
    Deplano V; Boufi M; Gariboldi V; Loundou AD; D'Journo XB; Cautela J; Djemli A; Alimi YS
    J Biomech; 2019 Sep; 94():138-146. PubMed ID: 31400813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.