These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies. Li B; Veturi Y; Bradford Y; Verma SS; Verma A; Lucas AM; Haas DW; Ritchie MD Pac Symp Biocomput; 2019; 24():296-307. PubMed ID: 30864331 [TBL] [Abstract][Full Text] [Related]
3. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures? Veturi Y; Ritchie MD Pac Symp Biocomput; 2018; 23():228-239. PubMed ID: 29218884 [TBL] [Abstract][Full Text] [Related]
4. Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies. Feng H; Mancuso N; Gusev A; Majumdar A; Major M; Pasaniuc B; Kraft P PLoS Genet; 2021 Apr; 17(4):e1008973. PubMed ID: 33831007 [TBL] [Abstract][Full Text] [Related]
6. SUMMIT-FA: a new resource for improved transcriptome imputation using functional annotations. Melton HJ; Zhang Z; Wu C Hum Mol Genet; 2024 Mar; 33(7):624-635. PubMed ID: 38129112 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome-Wide Association Supplements Genome-Wide Association in Kremling KAG; Diepenbrock CH; Gore MA; Buckler ES; Bandillo NB G3 (Bethesda); 2019 Sep; 9(9):3023-3033. PubMed ID: 31337639 [TBL] [Abstract][Full Text] [Related]
8. A large-scale transcriptome-wide association study (TWAS) of 10 blood cell phenotypes reveals complexities of TWAS fine-mapping. Tapia AL; Rowland BT; Rosen JD; Preuss M; Young K; Graff M; Choquet H; Couper DJ; Buyske S; Bien SA; Jorgenson E; Kooperberg C; Loos RJF; Morrison AC; North KE; Yu B; Reiner AP; Li Y; Raffield LM Genet Epidemiol; 2022 Feb; 46(1):3-16. PubMed ID: 34779012 [TBL] [Abstract][Full Text] [Related]
9. TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits. Nagpal S; Meng X; Epstein MP; Tsoi LC; Patrick M; Gibson G; De Jager PL; Bennett DA; Wingo AP; Wingo TS; Yang J Am J Hum Genet; 2019 Aug; 105(2):258-266. PubMed ID: 31230719 [TBL] [Abstract][Full Text] [Related]
10. Accounting for nonlinear effects of gene expression identifies additional associated genes in transcriptome-wide association studies. Lin Z; Xue H; Malakhov MM; Knutson KA; Pan W Hum Mol Genet; 2022 Jul; 31(14):2462-2470. PubMed ID: 35043938 [TBL] [Abstract][Full Text] [Related]
11. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci. Ghaffar A; ; Nyholt DR Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199 [TBL] [Abstract][Full Text] [Related]
12. Multitrait transcriptome-wide association study (TWAS) tests. Feng H; Mancuso N; Pasaniuc B; Kraft P Genet Epidemiol; 2021 Sep; 45(6):563-576. PubMed ID: 34082479 [TBL] [Abstract][Full Text] [Related]
13. Opportunities and challenges for transcriptome-wide association studies. Wainberg M; Sinnott-Armstrong N; Mancuso N; Barbeira AN; Knowles DA; Golan D; Ermel R; Ruusalepp A; Quertermous T; Hao K; Björkegren JLM; Im HK; Pasaniuc B; Rivas MA; Kundaje A Nat Genet; 2019 Apr; 51(4):592-599. PubMed ID: 30926968 [TBL] [Abstract][Full Text] [Related]
14. Meta-imputation of transcriptome from genotypes across multiple datasets by leveraging publicly available summary-level data. Liu AE; Kang HM PLoS Genet; 2022 Jan; 18(1):e1009571. PubMed ID: 35100255 [TBL] [Abstract][Full Text] [Related]
15. MATS: a novel multi-ancestry transcriptome-wide association study to account for heterogeneity in the effects of cis-regulated gene expression on complex traits. Knutson KA; Pan W Hum Mol Genet; 2023 Apr; 32(8):1237-1251. PubMed ID: 36179104 [TBL] [Abstract][Full Text] [Related]
16. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression. Ndungu A; Payne A; Torres JM; van de Bunt M; McCarthy MI Am J Hum Genet; 2020 Feb; 106(2):188-201. PubMed ID: 31978332 [TBL] [Abstract][Full Text] [Related]
17. Power analysis of transcriptome-wide association study: Implications for practical protocol choice. Cao C; Ding B; Li Q; Kwok D; Wu J; Long Q PLoS Genet; 2021 Feb; 17(2):e1009405. PubMed ID: 33635859 [TBL] [Abstract][Full Text] [Related]
18. Aggregating multiple expression prediction models improves the power of transcriptome-wide association studies. Zeng P; Dai J; Jin S; Zhou X Hum Mol Genet; 2021 May; 30(10):939-951. PubMed ID: 33615361 [TBL] [Abstract][Full Text] [Related]
19. TWAS Atlas: a curated knowledgebase of transcriptome-wide association studies. Lu M; Zhang Y; Yang F; Mai J; Gao Q; Xu X; Kang H; Hou L; Shang Y; Qain Q; Liu J; Jiang M; Zhang H; Bu C; Wang J; Zhang Z; Zhang Z; Zeng J; Li J; Xiao J Nucleic Acids Res; 2023 Jan; 51(D1):D1179-D1187. PubMed ID: 36243959 [TBL] [Abstract][Full Text] [Related]
20. Subset-based method for cross-tissue transcriptome-wide association studies improves power and interpretability. Guo X; Chatterjee N; Dutta D HGG Adv; 2024 Apr; 5(2):100283. PubMed ID: 38491773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]