These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 383150)
61. What transport adaptations enable mammals to absorb sugars and amino acids faster than reptiles? Karasov WH; Solberg DH; Diamond JM Am J Physiol; 1985 Aug; 249(2 Pt 1):G271-83. PubMed ID: 3895977 [TBL] [Abstract][Full Text] [Related]
62. Regulation of amino acid transport in L6 myoblasts. II. Different chemical properties of transport after amino acid deprivation. Klip A; Logan WJ; Gagalang E J Cell Physiol; 1982 Oct; 113(1):56-66. PubMed ID: 6290513 [TBL] [Abstract][Full Text] [Related]
63. The SPS amino acid sensor mediates nutrient acquisition and immune evasion in Candida albicans. Miramón P; Lorenz MC Cell Microbiol; 2016 Nov; 18(11):1611-1624. PubMed ID: 27060451 [TBL] [Abstract][Full Text] [Related]
64. Transport of sugars and amino acids in bacteria. XIII. Mechanism of selective inhibition of the active transport reactions for proline, leucine, and succinate by zinc ions. Anraku Y; Goto F; Kin E J Biochem; 1975 Jul; 78(1):149-57. PubMed ID: 1104598 [TBL] [Abstract][Full Text] [Related]
65. Post-transcriptional control and kinetic characterization of proline transport in germinating conidiospores of Aspergillus nidulans. Tazebay UH; Sophianopoulou V; Cubero B; Scazzocchio C; Diallinas G FEMS Microbiol Lett; 1995 Oct; 132(1-2):27-37. PubMed ID: 7590163 [TBL] [Abstract][Full Text] [Related]
66. Developmental regulation of proline transport in Leishmania donovani. Mazareb S; Fu ZY; Zilberstein D Exp Parasitol; 1999 Apr; 91(4):341-8. PubMed ID: 10092478 [TBL] [Abstract][Full Text] [Related]
67. T-2307, a novel arylamidine, is transported into Candida albicans by a high-affinity spermine and spermidine carrier regulated by Agp2. Nishikawa H; Sakagami T; Yamada E; Fukuda Y; Hayakawa H; Nomura N; Mitsuyama J; Miyazaki T; Mukae H; Kohno S J Antimicrob Chemother; 2016 Jul; 71(7):1845-55. PubMed ID: 27090633 [TBL] [Abstract][Full Text] [Related]
68. Biochemical changes associated with the antifungal action of the triazole ICI 153,066 on Candida albicans and Trichophyton quinckeanum. Barrett-Bee K; Newboult L; Pinder P FEMS Microbiol Lett; 1991 Apr; 63(2-3):127-31. PubMed ID: 2060756 [TBL] [Abstract][Full Text] [Related]
70. Effects of fluconazole on the metabolomic profile of Candida albicans. Katragkou A; Alexander EL; Eoh H; Raheem SK; Roilides E; Walsh TJ J Antimicrob Chemother; 2016 Mar; 71(3):635-40. PubMed ID: 26668236 [TBL] [Abstract][Full Text] [Related]
71. Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Martínez P; Ljungdahl PO Mol Cell Biol; 2005 Nov; 25(21):9435-46. PubMed ID: 16227594 [TBL] [Abstract][Full Text] [Related]
72. Insulin effect on amino acid transport in bone: dependence on protein synthesis and Na+. Hahn TJ; Downing SJ; Phang JM Am J Physiol; 1971 Jun; 220(6):1717-23. PubMed ID: 4253389 [No Abstract] [Full Text] [Related]
73. [Studies on the mechanism of antifungal action of ciclopiroxolamine/Inhibition of transmembrane transport of amino acid, K+ and phosphate in Candida albicans cells (author's transl)]. Iwata K; Yamaguchi H Arzneimittelforschung; 1981; 31(8A):1323-7. PubMed ID: 7028046 [TBL] [Abstract][Full Text] [Related]
74. Pigmentation and autofluorescence of Candida species after growth on tryptophan media. Chaskes S; Phillips AW Can J Microbiol; 1974 Apr; 20(4):595-603. PubMed ID: 4597649 [No Abstract] [Full Text] [Related]
75. A genetic approach to the study of neutral amino acid transport in mammalian cells in culture. Englesberg E; Moffett J J Membr Biol; 1986; 91(3):199-212. PubMed ID: 3528503 [No Abstract] [Full Text] [Related]
76. Growth of Candida albicans on keratin as sole source of nitrogen. KAPICA L; BLANK F Dermatologica; 1957 Aug; 115(2):81-105. PubMed ID: 13473396 [No Abstract] [Full Text] [Related]
77. Regulation and characterization of two inducible amino-acid transport systems in Chlorella vulgaris. Sauer N; Komor E; Tanner W Planta; 1983 Nov; 159(5):404-10. PubMed ID: 24258292 [TBL] [Abstract][Full Text] [Related]
78. Similarity of L-proline transport systems in kidney of the rat in-vitro, and of man in-vivo. Mohyuddin F; Scriver CR Biochem Biophys Res Commun; 1968 Sep; 32(5):852-60. PubMed ID: 5682309 [No Abstract] [Full Text] [Related]
79. Temperature effects on the proline transport system of Saccharomyces chevalieri. Schwencke J; Magaña-Schwencke N Biochim Biophys Acta; 1971 Aug; 241(2):513-21. PubMed ID: 5159795 [No Abstract] [Full Text] [Related]
80. Stereospecificity and electrogenicity of amino acid transport in Riccia fluitans. Felle H Planta; 1981 Oct; 152(6):505-12. PubMed ID: 24301154 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]