These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38315048)

  • 1. Toward Advanced Superomniphobicity: Hierarchical Insights from Serif-T Nanostructures to Microscale Wrinkles.
    Yun GT; Kim Y; Ahn H; Kim M; Jang GM; Im SG; Jung WB; Jung HT
    ACS Nano; 2024 Feb; ():. PubMed ID: 38315048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Springtail-inspired superomniphobic surface with extreme pressure resistance.
    Yun GT; Jung WB; Oh MS; Jang GM; Baek J; Kim NI; Im SG; Jung HT
    Sci Adv; 2018 Aug; 4(8):eaat4978. PubMed ID: 30151429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Step Fabrication of Flexible Bioinspired Superomniphobic Surfaces.
    Zhang Z; Ma B; Ye T; Gao W; Pei G; Luo J; Deng J; Yuan W
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39665-39672. PubMed ID: 35983670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fresnel Diffraction Strategy Enables the Fabrication of Flexible Superomniphobic Surfaces.
    Zhang Z; Pei G; Zhao K; Pang P; Gao W; Ye T; Ma B; Luo J; Deng J
    Langmuir; 2022 Nov; 38(47):14508-14516. PubMed ID: 36377419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces.
    Baek S; Moon HS; Kim W; Jeon S; Yong K
    Nanoscale; 2018 Sep; 10(37):17842-17851. PubMed ID: 30221273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding droplets on superomniphobic zinc oxide nanostructures.
    Perry G; Coffinier Y; Thomy V; Boukherroub R
    Langmuir; 2012 Jan; 28(1):389-95. PubMed ID: 22053956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macro-corrugated and nano-patterned hierarchically structured superomniphobic membrane for treatment of low surface tension oily wastewater by membrane distillation.
    Kharraz JA; Farid MU; Khanzada NK; Deka BJ; Arafat HA; An AK
    Water Res; 2020 May; 174():115600. PubMed ID: 32088385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering sticky superomniphobic surfaces on transparent and flexible PDMS substrate.
    Dufour R; Harnois M; Coffinier Y; Thomy V; Boukherroub R; Senez V
    Langmuir; 2010 Nov; 26(22):17242-7. PubMed ID: 20954730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving Extreme Pressure Resistance to Liquids on a Super-Omniphobic Surface with Armored Reentrants.
    Sun P; Jin Y; Yin Y; Wu C; Song C; Feng Y; Zhou P; Qin X; Niu Y; Liu Q; Zhang J; Wang Z; Hao X
    Small Methods; 2024 Apr; 8(4):e2201602. PubMed ID: 36919581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonfluorinated Superomniphobic Surfaces through Shape-Tunable Mushroom-like Polymeric Micropillar Arrays.
    Kim H; Han H; Lee S; Woo J; Seo J; Lee T
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):5484-5491. PubMed ID: 30576594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of highly robust super-liquid-repellent surfaces that can resist high-velocity impact of low-surface-tension liquids.
    Wang Y; Fan Y; Liu H; Wang S; Liu L; Dou Y; Huang S; Li J; Tian X
    Lab Chip; 2024 Mar; 24(6):1658-1667. PubMed ID: 38299611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Differences and Similarities in Static and Dynamic Contact Angles between Nanoscale and Microscale Textured Surfaces Using Molecular Dynamics Simulations.
    Slovin MR; Shirts MR
    Langmuir; 2015 Jul; 31(29):7980-90. PubMed ID: 26110823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    Soft Matter; 2015 May; 11(19):3806-11. PubMed ID: 25855128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing Liquid-Solid and Vapor-Liquid-Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy.
    Flynn Bolte KT; Balaraman RP; Jiao K; Tustison M; Kirkwood KS; Zhou C; Kohli P
    Langmuir; 2018 Mar; 34(12):3720-3730. PubMed ID: 29486565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars.
    Arunachalam S; Domingues EM; Das R; Nauruzbayeva J; Buttner U; Syed A; Mishra H
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Fabrication of Superomniphobic Polymer Hierarchical Structures for Directional Droplet Movement.
    Jang H; Lee HS; Lee KS; Kim DR
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9213-9220. PubMed ID: 28252281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication techniques for bioinspired, mechanically-durable, superliquiphobic surfaces for water, oil, and surfactant repellency.
    Martin S; Brown PS; Bhushan B
    Adv Colloid Interface Sci; 2017 Mar; 241():1-23. PubMed ID: 28143675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stretchable Superhydrophobicity from Monolithic, Three-Dimensional Hierarchical Wrinkles.
    Lee WK; Jung WB; Nagel SR; Odom TW
    Nano Lett; 2016 Jun; 16(6):3774-9. PubMed ID: 27144774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.