These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38315048)

  • 21. Small degree of anisotropic wetting on self-similar hierarchical wrinkled surfaces.
    Lin G; Zhang Q; Lv C; Tang Y; Yin J
    Soft Matter; 2018 Feb; 14(9):1517-1529. PubMed ID: 29345710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Passive Removal of Highly Wetting Liquids and Ice on Quasi-Liquid Surfaces.
    Zhang L; Guo Z; Sarma J; Dai X
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):20084-20095. PubMed ID: 32255601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
    Kumar M; Bhardwaj R
    Sci Rep; 2020 Jan; 10(1):935. PubMed ID: 31969578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superamphiphobic Cu/CuO Micropillar Arrays with High Repellency Towards Liquids of Extremely High Viscosity and Low Surface Tension.
    Zhu Q; Li B; Li S; Luo G; Zheng B; Zhang J
    Sci Rep; 2019 Jan; 9(1):702. PubMed ID: 30679771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecularly Capped Omniphobic Polydimethylsiloxane Brushes with Ultra-Fast Contact Line Dynamics.
    Khatir B; Azimi Dijvejin Z; Serles P; Filleter T; Golovin K
    Small; 2023 Sep; 19(38):e2301142. PubMed ID: 37202658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface Chemistry Enhancements for the Tunable Super-Liquid Repellency of Low-Surface-Tension Liquids.
    Wong WSY
    Nano Lett; 2019 Mar; 19(3):1892-1901. PubMed ID: 30726096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity.
    Wong TS; Kang SH; Tang SK; Smythe EJ; Hatton BD; Grinthal A; Aizenberg J
    Nature; 2011 Sep; 477(7365):443-7. PubMed ID: 21938066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Bioinspired Microstructures for Switchable Repellency in both Air and Liquid.
    Liu X; Gu H; Ding H; Du X; Wei M; Chen Q; Gu Z
    Adv Sci (Weinh); 2020 Oct; 7(20):2000878. PubMed ID: 33101848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of air and water vapor environments on the hydrophobicity of surfaces.
    Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP
    J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures.
    Mazumder P; Jiang Y; Baker D; Carrilero A; Tulli D; Infante D; Hunt AT; Pruneri V
    Nano Lett; 2014 Aug; 14(8):4677-81. PubMed ID: 24988148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars.
    Choi J; Jo W; Lee SY; Jung YS; Kim SH; Kim HT
    ACS Nano; 2017 Aug; 11(8):7821-7828. PubMed ID: 28715178
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanically durable, superomniphobic coatings prepared by layer-by-layer technique for self-cleaning and anti-smudge.
    Brown PS; Bhushan B
    J Colloid Interface Sci; 2015 Oct; 456():210-8. PubMed ID: 26133277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micro-and nanostructured silicon-based superomniphobic surfaces.
    Nguyen TP; Boukherroub R; Thomy V; Coffinier Y
    J Colloid Interface Sci; 2014 Feb; 416():280-8. PubMed ID: 24370432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wetting resistance at its topographical limit: the benefit of mushroom and serif T structures.
    Hensel R; Helbig R; Aland S; Braun HG; Voigt A; Neinhuis C; Werner C
    Langmuir; 2013 Jan; 29(4):1100-12. PubMed ID: 23278566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-frequency acoustic for nanostructure wetting characterization.
    Li S; Lamant S; Carlier J; Toubal M; Campistron P; Xu X; Vereecke G; Senez V; Thomy V; Nongaillard B
    Langmuir; 2014 Jul; 30(25):7601-8. PubMed ID: 24881654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomimetic Coating-free Superomniphobicity.
    Das R; Ahmad Z; Nauruzbayeva J; Mishra H
    Sci Rep; 2020 May; 10(1):7934. PubMed ID: 32404874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of Fluoro-Free Surfaces Super-Repellent to Low-Surface-Tension Liquids.
    Wong WSY; Kiseleva MS; Zhou S; Junaid M; Pitkänen L; Ras RHA
    Adv Mater; 2023 Jul; 35(29):e2300306. PubMed ID: 37052177
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Is a Knowledge of Surface Topology and Contact Angles Enough to Define the Drop Impact Outcome?
    Malavasi I; Veronesi F; Caldarelli A; Zani M; Raimondo M; Marengo M
    Langmuir; 2016 Jun; 32(25):6255-62. PubMed ID: 27228028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.