These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38315071)

  • 21. A development of the generalized Spiegler-Kedem-Katchalsky model equations for interactions of hydrated species in transport through polymeric membranes.
    Slezak A; Grzegorczyn S
    Polim Med; 2006; 36(4):43-51. PubMed ID: 17402232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Application of the network thermodynamics to interpretation of membrane transport: evaluation of the resistance coefficients of the polymeric membrane in polarization concentration conditions].
    Slyzak A
    Polim Med; 2011; 41(1):43-51. PubMed ID: 21744657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Computer modeling the concentration characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].
    Slezak IH; Jasik-Slezak J; Rogal M; Slezak A
    Polim Med; 2006; 36(2):33-47. PubMed ID: 17022154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Application of the Peusner's network thermodynamics to interpretation of the passive membrane transport of binary non-electrolytic solution: evaluation the P(ij) coefficients of polymeric membrane in polarization concentration conditions].
    Slezak A
    Polim Med; 2011; 41(4):61-71. PubMed ID: 22332327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Thermodynamical description of the concentration polarization in a membrane transport of non-electrolyte solution].
    Jasik-Slezak J; Slezak A
    Polim Med; 2010; 40(4):49-55. PubMed ID: 21387842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Application of the network thermodynamics to interpretation of transport in a microsystems: transport of homogeneous solutions through polymeric membrane].
    Slezak A
    Polim Med; 2011; 41(1):29-41. PubMed ID: 21744656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Nonequilibrium thermodynamics model equations of the volume flow through double-membrane system with concentration polarization].
    Slezak A
    Polim Med; 2010; 40(1):15-24. PubMed ID: 20446525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Application of the network thermodynamics to interpretation of membrane transport: evaluation of the L(ij) coefficients of the polymeric membrane in polarization concentration conditions].
    Slezak A
    Polim Med; 2011; 41(4):53-9. PubMed ID: 22332326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Description of the membrane transport using Peusner's network thermodynamics: relations between Rik, Lik, Hik and Pik coefficients].
    Slezak A
    Polim Med; 2011; 41(2):57-61. PubMed ID: 21866798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developing Kedem-Katchalsky equations of the transmembrane transport for binary nonhomogeneous non-electrolyte solutions.
    Slezak A; Jarzyńska M
    Polim Med; 2005; 35(1):15-20. PubMed ID: 16050073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear Kedem-Katchalsky model equations of the volume flux of homogeneous non-electrolyte solutions in double-membrane system.
    Slezak A; Bryll A
    Polim Med; 2004; 34(4):45-52. PubMed ID: 15850297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Concentration boundary layers thicknesses estimation method based on measurements of the volume flux of ternary solutions].
    Slezak A
    Polim Med; 2008; 38(4):35-9. PubMed ID: 19245083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time evolution of NaCl flux through the microbial cellulose membrane with concentration polarization.
    Grzegorczyn S; Michalska-Małecka K; Slezak A
    Polim Med; 2008; 38(2):11-20. PubMed ID: 18810983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Practical forms of entropy production for single-membrane system and binary non-electrolyte solutions.
    Jasik-Slezak J; Bilewicz-Wyrozumowska T; Slezak A
    Polim Med; 2006; 36(4):53-9. PubMed ID: 17402233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane transport of the non-homogeneous non-electrolyte solutions: mathematical model based on the Kedem-Katchalsky and Rayleigh equations.
    Slezak A
    Polim Med; 2007; 37(1):57-66. PubMed ID: 17703724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Concentration dependencies of W(ij) Peusner's coefficient for different composition and concentration of the non-electrolyte ternary solutions].
    Jasik-Slęzak J; Slezak A
    Polim Med; 2014; 44(3):179-87. PubMed ID: 25696942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Relation between effective and real solute permeability coefficients through polymeric membrane].
    Jasik-Slezak J; Slezak A
    Polim Med; 2010; 40(2):29-36. PubMed ID: 20649087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of thickness of concentration boundary layers by osmotic volume flux determination.
    Jasik-Ślęzak JS; Olszówka KM; Slęzak A
    Gen Physiol Biophys; 2011 Jun; 30(2):186-95. PubMed ID: 21613674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generalization of the Spiegler-Kedem-Katchalsky frictional model equations of the transmembrane transport for multicomponent non-electrolyte solutions.
    Slezak A; Turczyński B
    Biophys Chem; 1992 Oct; 44(3):139-42. PubMed ID: 1420944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modification of the Kedem-Katchalsky equations.
    Slezak A; Turczynski B
    Biophys Chem; 1986 Jul; 24(2):173-8. PubMed ID: 3756309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.