These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38315077)

  • 1. Robust myco-composites: a biocomposite platform for versatile hybrid-living materials.
    Shen SC; Lee NA; Lockett WJ; Acuil AD; Gazdus HB; Spitzer BN; Buehler MJ
    Mater Horiz; 2024 Apr; 11(7):1689-1703. PubMed ID: 38315077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates.
    Elsacker E; Vandelook S; Brancart J; Peeters E; De Laet L
    PLoS One; 2019; 14(7):e0213954. PubMed ID: 31329589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waste-Derived Low-Cost Mycelium Nanopapers with Tunable Mechanical and Surface Properties.
    Jones M; Weiland K; Kujundzic M; Theiner J; Kählig H; Kontturi E; John S; Bismarck A; Mautner A
    Biomacromolecules; 2019 Sep; 20(9):3513-3523. PubMed ID: 31355634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical characteristics of bacterial cellulose-reinforced mycelium composite materials.
    Elsacker E; Vandelook S; Damsin B; Van Wylick A; Peeters E; De Laet L
    Fungal Biol Biotechnol; 2021 Dec; 8(1):18. PubMed ID: 34863310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renewable mycelium based composite - sustainable approach for lignocellulose waste recovery and alternative to synthetic materials - a review.
    Angelova GV; Brazkova MS; Krastanov AI
    Z Naturforsch C J Biosci; 2021 Nov; 76(11-12):431-442. PubMed ID: 34252997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Bio-Based Hybrid Composites Made of Wood, Fungal Mycelium and Cellulose Nanofibrils.
    Sun W; Tajvidi M; Hunt CG; McIntyre G; Gardner DJ
    Sci Rep; 2019 Mar; 9(1):3766. PubMed ID: 30842558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of the basidiomycete Fomes fomentarius for the production of composite materials.
    Pohl C; Schmidt B; Nunez Guitar T; Klemm S; Gusovius HJ; Platzk S; Kruggel-Emden H; Klunker A; Völlmecke C; Fleck C; Meyer V
    Fungal Biol Biotechnol; 2022 Feb; 9(1):4. PubMed ID: 35209941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Performance Engineered Composites Biofabrication Using Fungi.
    Zhang M; Zhao X; Bai M; Xue J; Liu R; Huang Y; Wang M; Cao J
    Small; 2024 Jun; 20(25):e2309171. PubMed ID: 38196296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungi in Mycelium-Based Composites: Usage and Recommendations.
    Sydor M; Cofta G; Doczekalska B; Bonenberg A
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Living Entangled Network Composites Enabled by Mycelium.
    Wang H; Tao J; Wu Z; Weiland K; Wang Z; Masania K; Wang B
    Adv Sci (Weinh); 2024 Jun; 11(24):e2309370. PubMed ID: 38477443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current state and future prospects of pure mycelium materials.
    Vandelook S; Elsacker E; Van Wylick A; De Laet L; Peeters E
    Fungal Biol Biotechnol; 2021 Dec; 8(1):20. PubMed ID: 34930476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wood-Veneer-Reinforced Mycelium Composites for Sustainable Building Components.
    Özdemir E; Saeidi N; Javadian A; Rossi A; Nolte N; Ren S; Dwan A; Acosta I; Hebel DE; Wurm J; Eversmann P
    Biomimetics (Basel); 2022 Mar; 7(2):. PubMed ID: 35466256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tilted Arch; Implementation of Additive Manufacturing and Bio-Welding of Mycelium-Based Composites.
    Modanloo B; Ghazvinian A; Matini M; Andaroodi E
    Biomimetics (Basel); 2021 Nov; 6(4):. PubMed ID: 34940011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy.
    Barta DG; Simion I; Tiuc AE; Vasile O
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Grading of Mycelium Materials with Inorganic Particles: The Effect of Nanoclay on the Biological, Chemical and Mechanical Properties.
    Elsacker E; De Laet L; Peeters E
    Biomimetics (Basel); 2022 May; 7(2):. PubMed ID: 35645184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material.
    Appels FVW; Dijksterhuis J; Lukasiewicz CE; Jansen KMB; Wösten HAB; Krijgsheld P
    Sci Rep; 2018 Mar; 8(1):4703. PubMed ID: 29549308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Printing of Living Mycelium-Based Composites: Material Compositions, Workflows, and Ways to Mitigate Contamination.
    Mohseni A; Vieira FR; Pecchia JA; Gürsoy B
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical, Physical, and Chemical Properties of Mycelium-Based Composites Produced from Various Lignocellulosic Residues and Fungal Species.
    Aiduang W; Kumla J; Srinuanpan S; Thamjaree W; Lumyong S; Suwannarach N
    J Fungi (Basel); 2022 Oct; 8(11):. PubMed ID: 36354892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive framework for the production of mycelium-based lignocellulosic composites.
    Elsacker E; Vandelook S; Van Wylick A; Ruytinx J; De Laet L; Peeters E
    Sci Total Environ; 2020 Jul; 725():138431. PubMed ID: 32298897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amazing Fungi for Eco-Friendly Composite Materials: A Comprehensive Review.
    Aiduang W; Chanthaluck A; Kumla J; Jatuwong K; Srinuanpan S; Waroonkun T; Oranratmanee R; Lumyong S; Suwannarach N
    J Fungi (Basel); 2022 Aug; 8(8):. PubMed ID: 36012830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.