These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38315811)

  • 1. Structural Insights into the Reaction between Hydrogen Peroxide and Di-iron Complexes at the Ferroxidase Center of Ferritin.
    Jiao R; Zhao G; Zhang T
    Inorg Chem; 2024 Feb; 63(7):3359-3365. PubMed ID: 38315811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stoichiometric production of hydrogen peroxide and parallel formation of ferric multimers through decay of the diferric-peroxo complex, the first detectable intermediate in ferritin mineralization.
    Jameson GN; Jin W; Krebs C; Perreira AS; Tavares P; Liu X; Theil EC; Huynh BH
    Biochemistry; 2002 Nov; 41(45):13435-43. PubMed ID: 12416989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mu-1,2-peroxo diferric complex formation in horse spleen ferritin. A mixed H/L-subunit heteropolymer.
    Zhao G; Su M; Chasteen ND
    J Mol Biol; 2005 Sep; 352(2):467-77. PubMed ID: 16095616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionality of the three-site ferroxidase center of Escherichia coli bacterial ferritin (EcFtnA).
    Bou-Abdallah F; Yang H; Awomolo A; Cooper B; Woodhall MR; Andrews SC; Chasteen ND
    Biochemistry; 2014 Jan; 53(3):483-95. PubMed ID: 24380371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of O
    Bradley JM; Svistunenko DA; Pullin J; Hill N; Stuart RK; Palenik B; Wilson MT; Hemmings AM; Moore GR; Le Brun NE
    Proc Natl Acad Sci U S A; 2019 Feb; 116(6):2058-2067. PubMed ID: 30659147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple pathways for mineral core formation in mammalian apoferritin. The role of hydrogen peroxide.
    Zhao G; Bou-Abdallah F; Arosio P; Levi S; Janus-Chandler C; Chasteen ND
    Biochemistry; 2003 Mar; 42(10):3142-50. PubMed ID: 12627982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facilitated diffusion of iron(II) and dioxygen substrates into human H-chain ferritin. A fluorescence and absorbance study employing the ferroxidase center substitution Y34W.
    Bou-Abdallah F; Zhao G; Biasiotto G; Poli M; Arosio P; Chasteen ND
    J Am Chem Soc; 2008 Dec; 130(52):17801-11. PubMed ID: 19055359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the ferroxidase site of ferritins from higher eukaryotes.
    Bertini I; Lalli D; Mangani S; Pozzi C; Rosa C; Theil EC; Turano P
    J Am Chem Soc; 2012 Apr; 134(14):6169-76. PubMed ID: 22424302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly is prerequisite for catalysis of Fe(II) oxidation by catalytically active subunits of ferritin.
    Ebrahimi KH; Hagedoorn PL; Hagen WR
    J Biol Chem; 2015 Oct; 290(44):26801-10. PubMed ID: 26370076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QM/MM structural and spectroscopic analysis of the di-iron(II) and di-iron(III) ferroxidase site in M ferritin.
    Harris TV; Morokuma K
    Inorg Chem; 2013 Aug; 52(15):8551-63. PubMed ID: 23865546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for iron mineralization by bacterioferritin.
    Crow A; Lawson TL; Lewin A; Moore GR; Le Brun NE
    J Am Chem Soc; 2009 May; 131(19):6808-13. PubMed ID: 19391621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study of iron(II) and -(III) complexes with a simple model human H ferritin ferroxidase center.
    Bacelo DE; Binning RC
    Inorg Chem; 2006 Dec; 45(25):10263-9. PubMed ID: 17140234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferritin with Atypical Ferroxidase Centers Takes B-Channels as the Pathway for Fe
    Wang W; Zhang Y; Zhao G; Wang H
    Inorg Chem; 2021 May; 60(10):7207-7216. PubMed ID: 33852289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement.
    Honarmand Ebrahimi K; Bill E; Hagedoorn PL; Hagen WR
    Nat Chem Biol; 2012 Nov; 8(11):941-8. PubMed ID: 23001032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron Oxidation and Core Formation in Recombinant Heteropolymeric Human Ferritins.
    Mehlenbacher M; Poli M; Arosio P; Santambrogio P; Levi S; Chasteen ND; Bou-Abdallah F
    Biochemistry; 2017 Aug; 56(30):3900-3912. PubMed ID: 28636371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique iron binding and oxidation properties of human mitochondrial ferritin: a comparative analysis with Human H-chain ferritin.
    Bou-Abdallah F; Santambrogio P; Levi S; Arosio P; Chasteen ND
    J Mol Biol; 2005 Apr; 347(3):543-54. PubMed ID: 15755449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ferroxidase reaction of ferritin reveals a diferric mu-1,2 bridging peroxide intermediate in common with other O2-activating non-heme diiron proteins.
    Moënne-Loccoz P; Krebs C; Herlihy K; Edmondson DE; Theil EC; Huynh BH; Loehr TM
    Biochemistry; 1999 Apr; 38(17):5290-5. PubMed ID: 10220314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural studies of bacterioferritin B from Pseudomonas aeruginosa suggest a gating mechanism for iron uptake via the ferroxidase center .
    Weeratunga SK; Lovell S; Yao H; Battaile KP; Fischer CJ; Gee CE; Rivera M
    Biochemistry; 2010 Feb; 49(6):1160-75. PubMed ID: 20067302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic evidence for the role of a site of the di-iron catalytic center of ferritins in tuning the kinetics of Fe(ii) oxidation.
    Ebrahimi KH; Bill E; Hagedoorn PL; Hagen WR
    Mol Biosyst; 2016 Nov; 12(12):3576-3588. PubMed ID: 27722502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron Binding in the Ferroxidase Site of Human Mitochondrial Ferritin.
    Ciambellotti S; Pratesi A; Tassone G; Turano P; Mangani S; Pozzi C
    Chemistry; 2021 Oct; 27(59):14690-14701. PubMed ID: 34343376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.