These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38315867)

  • 21. Morphological and Phylogenetic Resolution of
    Ferreira SL; Stauder CM; Martin DKH; Kasson MT
    Plant Dis; 2021 May; 105(5):1298-1307. PubMed ID: 32852252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stomatal patchiness in the Mediterranean holm oak (Quercus ilex L.) under water stress in the nursery and in the forest.
    Guàrdia M; Fernàndez J; Elena G; Fleck I
    Tree Physiol; 2012 Jul; 32(7):829-38. PubMed ID: 22539636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osmotic stress responses of individual white oak (Quercus section, Quercus subgenus) genotypes cultured in vitro.
    Demeter Z; Kanalas P; Máthé C; Cseke K; Szőllősi E; M-Hamvas M; Jámbrik K; Kiss Z; Mészáros I
    J Plant Physiol; 2014 Jan; 171(2):16-24. PubMed ID: 24331415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation.
    Pretzsch H; Schütze G; Uhl E
    Plant Biol (Stuttg); 2013 May; 15(3):483-95. PubMed ID: 23062025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dampening effects of long-term experimental drought on growth and mortality rates of a Holm oak forest.
    Barbeta A; Ogaya R; Peñuelas J
    Glob Chang Biol; 2013 Oct; 19(10):3133-44. PubMed ID: 23712619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variable hydraulic resistances and their impact on plant drought response modelling.
    Baert A; De Schepper V; Steppe K
    Tree Physiol; 2015 Apr; 35(4):439-49. PubMed ID: 25273815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ecosystem wilting point defines drought response and recovery of a Quercus-Carya forest.
    Wood JD; Gu L; Hanson PJ; Frankenberg C; Sack L
    Glob Chang Biol; 2023 Apr; 29(7):2015-2029. PubMed ID: 36600482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The temporal response to drought in a Mediterranean evergreen tree: comparing a regional precipitation gradient and a throughfall exclusion experiment.
    Martin-Stpaul NK; Limousin JM; Vogt-Schilb H; Rodríguez-Calcerrada J; Rambal S; Longepierre D; Misson L
    Glob Chang Biol; 2013 Aug; 19(8):2413-26. PubMed ID: 23553916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae).
    Eller CB; Burgess SS; Oliveira RS
    Tree Physiol; 2015 Apr; 35(4):387-99. PubMed ID: 25716877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drought and
    Colangelo M; Camarero JJ; Borghetti M; Gentilesca T; Oliva J; Redondo MA; Ripullone F
    Front Plant Sci; 2018; 9():1595. PubMed ID: 30455713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Community structures of N2 -fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought.
    Rico L; Ogaya R; Terradas J; Peñuelas J
    Plant Biol (Stuttg); 2014 May; 16(3):586-93. PubMed ID: 23952768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the cost of an invasive forest pathogen: a case study with oak wilt.
    Haight RG; Homans FR; Horie T; Mehta SV; Smith DJ; Venette RC
    Environ Manage; 2011 Mar; 47(3):506-17. PubMed ID: 21331653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe.
    Bose AK; Scherrer D; Camarero JJ; Ziche D; Babst F; Bigler C; Bolte A; Dorado-Liñán I; Etzold S; Fonti P; Forrester DI; Gavinet J; Gazol A; de Andrés EG; Karger DN; Lebourgeois F; Lévesque M; Martínez-Sancho E; Menzel A; Neuwirth B; Nicolas M; Sanders TGM; Scharnweber T; Schröder J; Zweifel R; Gessler A; Rigling A
    Sci Total Environ; 2021 Aug; 784():147222. PubMed ID: 34088042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determinants of drought effects on crown condition and their relationship with depletion of carbon reserves in a Mediterranean holm oak forest.
    Galiano L; Martínez-Vilalta J; Sabaté S; Lloret F
    Tree Physiol; 2012 Apr; 32(4):478-89. PubMed ID: 22499595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential physiological and biochemical responses of Quercus infectoria and Q. libani to drought and charcoal disease.
    Ghanbary E; Tabari Kouchaksaraei M; Zarafshar M; Bader KM; Mirabolfathy M; Ziaei M
    Physiol Plant; 2020 Apr; 168(4):876-892. PubMed ID: 31517996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.
    Urli M; Porté AJ; Cochard H; Guengant Y; Burlett R; Delzon S
    Tree Physiol; 2013 Jul; 33(7):672-83. PubMed ID: 23658197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012.
    Geron C; Daly R; Harley P; Rasmussen R; Seco R; Guenther A; Karl T; Gu L
    Chemosphere; 2016 Mar; 146():8-21. PubMed ID: 26706927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial distribution of Raffaelea quercivora in xylem of naturally infested and inoculated oak trees.
    Takahashi Y; Matsushita N; Hogetsu T
    Phytopathology; 2010 Aug; 100(8):747-55. PubMed ID: 20626278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct growth responses to drought for oak and beech in temperate mixed forests.
    Vanhellemont M; Sousa-Silva R; Maes SL; Van den Bulcke J; Hertzog L; De Groote SRE; Van Acker J; Bonte D; Martel A; Lens L; Verheyen K
    Sci Total Environ; 2019 Feb; 650(Pt 2):3017-3026. PubMed ID: 30373078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural variation and drought-induced differences in metabolite profiles of red oak-leaf and Romaine lettuce play a role in modulating the interaction with Salmonella enterica.
    Liu X; Li Y; Micallef SA
    Int J Food Microbiol; 2023 Jan; 385():109998. PubMed ID: 36371998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.