BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38316230)

  • 21. Global Cellular Metabolic Rewiring Adapts Corynebacterium glutamicum to Efficient Nonnatural Xylose Utilization.
    Sun X; Mao Y; Luo J; Liu P; Jiang M; He G; Zhang Z; Cao Q; Shen J; Ma H; Chen T; Wang Z
    Appl Environ Microbiol; 2022 Dec; 88(23):e0151822. PubMed ID: 36383019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Case study of xylose conversion to glycolate in Corynebacterium glutamicum: Current limitation and future perspective of the CRISPR-Cas systems.
    Lee SS; Park J; Heo YB; Woo HM
    Enzyme Microb Technol; 2020 Jan; 132():109395. PubMed ID: 31731968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum.
    Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H
    Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose.
    Buschke N; Schröder H; Wittmann C
    Biotechnol J; 2011 Mar; 6(3):306-17. PubMed ID: 21298810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine.
    Meiswinkel TM; Gopinath V; Lindner SN; Nampoothiri KM; Wendisch VF
    Microb Biotechnol; 2013 Mar; 6(2):131-40. PubMed ID: 23164409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reconstruction of tricarboxylic acid cycle in Corynebacterium glutamicum with a genome-scale metabolic network model for trans-4-hydroxyproline production.
    Zhang Y; Zhang Y; Shang X; Wang B; Hu Q; Liu S; Wen T
    Biotechnol Bioeng; 2019 Jan; 116(1):99-109. PubMed ID: 30102770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.
    Wang C; Zhang H; Cai H; Zhou Z; Chen Y; Chen Y; Ouyang P
    Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources.
    Pérez-García F; Ziert C; Risse JM; Wendisch VF
    J Biotechnol; 2017 Sep; 258():59-68. PubMed ID: 28478080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical.
    Kim HT; Khang TU; Baritugo KA; Hyun SM; Kang KH; Jung SH; Song BK; Park K; Oh MK; Kim GB; Kim HU; Lee SY; Park SJ; Joo JC
    Metab Eng; 2019 Jan; 51():99-109. PubMed ID: 30144560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
    Radek A; Müller MF; Gätgens J; Eggeling L; Krumbach K; Marienhagen J; Noack S
    J Biotechnol; 2016 Aug; 231():160-166. PubMed ID: 27297548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xylose as preferred substrate for sarcosine production by recombinant Corynebacterium glutamicum.
    Mindt M; Heuser M; Wendisch VF
    Bioresour Technol; 2019 Jun; 281():135-142. PubMed ID: 30818264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.
    Kawaguchi H; Yoshihara K; Hara KY; Hasunuma T; Ogino C; Kondo A
    Microb Cell Fact; 2018 May; 17(1):76. PubMed ID: 29773073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tyrosinase-based production of L-DOPA by Corynebacterium glutamicum.
    Kurpejović E; Wendisch VF; Sariyar Akbulut B
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9103-9111. PubMed ID: 34762142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systems metabolic engineering of Corynebacterium glutamicum to assimilate formic acid for biomass accumulation and succinic acid production.
    Li K; Zhang X; Li C; Liang YC; Zhao XQ; Liu CG; Sinskey AJ; Bai FW
    Bioresour Technol; 2024 Jun; 402():130774. PubMed ID: 38701983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic engineering of Corynebacterium glutamicum for the high-level production of valerolactam, a nylon-5 monomer.
    Han T; Lee SY
    Metab Eng; 2023 Sep; 79():78-85. PubMed ID: 37451533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved fermentative production of gamma-aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose.
    Jorge JM; Nguyen AQ; Pérez-García F; Kind S; Wendisch VF
    Biotechnol Bioeng; 2017 Apr; 114(4):862-873. PubMed ID: 27800627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum.
    Zhang C; Zhang J; Kang Z; Du G; Chen J
    J Ind Microbiol Biotechnol; 2015 May; 42(5):787-97. PubMed ID: 25665502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization.
    Kang MK; Lee J; Um Y; Lee TS; Bott M; Park SJ; Woo HM
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5991-6002. PubMed ID: 24706215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum.
    Wang C; Cai H; Zhou Z; Zhang K; Chen Z; Chen Y; Wan H; Ouyang P
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1249-58. PubMed ID: 24859809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.
    Jojima T; Noburyu R; Sasaki M; Tajima T; Suda M; Yukawa H; Inui M
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1165-72. PubMed ID: 25421564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.