BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38316310)

  • 1. Investigation of the migration of natural organic matter-iron-antimony nano-colloids in acid mine drainage.
    Zhang Y; Wu P; Zhu J; Liao P; Niyuhire E; Fan F; Mao W; Dong L; Zheng R; Li Y
    Sci Total Environ; 2024 Mar; 918():170666. PubMed ID: 38316310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation and Transport of Cr(III)-NOM-Fe Colloids upon Reaction of Cr(VI) with NOM-Fe(II) Colloids at Anoxic-Oxic Interfaces.
    Liao P; Pan C; Ding W; Li W; Yuan S; Fortner JD; Giammar DE
    Environ Sci Technol; 2020 Apr; 54(7):4256-4266. PubMed ID: 32163701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron colloidal transport mechanisms and sequestration of As, Ni, and Cu along AMD-induced environmental gradients.
    Fan L; Zhu T; Yang Y; Han T; Qiao Z; Huang X; Zhai W; Pan X; Zhang D
    Sci Total Environ; 2023 Nov; 898():165513. PubMed ID: 37451442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the precipitation of iron and the synchronous removal mechanisms of antimony and arsenic in the AMD under the induction of carbonate rocks.
    Zhang S; Zhang R; Wu P; Zhang Y; Fu Y; An L; Zhang Y
    Environ Sci Pollut Res Int; 2022 Aug; 29(36):55161-55173. PubMed ID: 35316491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation, Aggregation, and Deposition Dynamics of NOM-Iron Colloids at Anoxic-Oxic Interfaces.
    Liao P; Li W; Jiang Y; Wu J; Yuan S; Fortner JD; Giammar DE
    Environ Sci Technol; 2017 Nov; 51(21):12235-12245. PubMed ID: 28992695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced NOM triggered rapid Cr(VI) reduction and formation of NOM-Cr(III) colloids in anoxic environments.
    Li B; Liao P; Xie L; Li Q; Pan C; Ning Z; Liu C
    Water Res; 2020 Aug; 181():115923. PubMed ID: 32422451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimony and arsenic partitioning during Fe
    Karimian N; Johnston SG; Burton ED
    Chemosphere; 2018 Mar; 195():515-523. PubMed ID: 29277031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry.
    Zhao W; Walker SL; Huang Q; Cai P
    Water Res; 2014 Apr; 53():35-46. PubMed ID: 24495985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements.
    Lazareva EV; Myagkaya IN; Kirichenko IS; Gustaytis MA; Zhmodik SM
    Sci Total Environ; 2019 Apr; 660():468-483. PubMed ID: 30640114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: the role of organic and inorganic colloids.
    Majumder S; Nath B; Sarkar S; Chatterjee D; Roman-Ross G; Hidalgo M
    Sci Total Environ; 2014 Jan; 468-469():804-12. PubMed ID: 24070874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structures of dissolved and colloidal As
    Zhang D; Cao R; Song Y; Wang Y; Zhang P; Wang Y; Xiao F; Wang S; Jia Y
    J Hazard Mater; 2022 May; 430():128266. PubMed ID: 35168098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and stability of NOM-Mn(III) colloids in aquatic environments.
    Li Q; Xie L; Jiang Y; Fortner JD; Yu K; Liao P; Liu C
    Water Res; 2019 Feb; 149():190-201. PubMed ID: 30447524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forces between colloid particles in natural waters.
    Mosley LM; Hunter KA; Ducker WA
    Environ Sci Technol; 2003 Aug; 37(15):3303-8. PubMed ID: 12966974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III).
    Ritter K; Aiken GR; Ranville JF; Bauer M; Macalady DL
    Environ Sci Technol; 2006 Sep; 40(17):5380-7. PubMed ID: 16999114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloid-bound radicals formed in NOM-enhanced Fe(III)/peroxymonosulfate process accelerate the degradation of trace organic contaminants in water.
    Wang Y; Deng Y; Yao L; Yang X
    Water Res; 2024 Jan; 248():120880. PubMed ID: 38007886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil migration of antimony and arsenic facilitated by colloids in lysimeter studies.
    Zhao L; Shangguan Y; Yao N; Sun Z; Ma J; Hou H
    Sci Total Environ; 2020 Aug; 728():138874. PubMed ID: 32570330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids.
    Moens C; Waegeneers N; Fritzsche A; Nobels P; Smolders E
    J Chromatogr A; 2019 Aug; 1599():203-214. PubMed ID: 31047657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexation of Antimony with Natural Organic Matter: Performance Evaluation during Coagulation-Flocculation Process.
    Inam MA; Khan R; Park DR; Khan S; Uddin A; Yeom IT
    Int J Environ Res Public Health; 2019 Mar; 16(7):. PubMed ID: 30934698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.