These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38316667)

  • 1. Development and Validation of Deep Learning-Based Automated Detection of Cervical Lymphadenopathy in Patients with Lymphoma for Treatment Response Assessment: A Bi-institutional Feasibility Study.
    Nam Y; Kim SY; Kim KA; Kwon E; Lee YH; Jang J; Lee MK; Kim J; Choi Y
    J Imaging Inform Med; 2024 Apr; 37(2):734-743. PubMed ID: 38316667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximation of head and neck cancer volumes in contrast enhanced CT.
    Dejaco D; Url C; Schartinger VH; Haug AK; Fischer N; Riedl D; Posch A; Riechelmann H; Widmann G
    Cancer Imaging; 2015 Sep; 15():16. PubMed ID: 26419914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based multimodal segmentation of oropharyngeal squamous cell carcinoma on CT and MRI using self-configuring nnU-Net.
    Choi Y; Bang J; Kim SY; Seo M; Jang J
    Eur Radiol; 2024 Aug; 34(8):5389-5400. PubMed ID: 38243135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully-automated sarcopenia assessment in head and neck cancer: development and external validation of a deep learning pipeline.
    Ye Z; Saraf A; Ravipati Y; Hoebers F; Zha Y; Zapaishchykova A; Likitlersuang J; Tishler RB; Schoenfeld JD; Margalit DN; Haddad RI; Mak RH; Naser M; Wahid KA; Sahlsten J; Jaskari J; Kaski K; Mäkitie AA; Fuller CD; Aerts HJWL; Kann BH
    medRxiv; 2023 Mar; ():. PubMed ID: 36945519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning for Automated Elective Lymph Node Level Segmentation for Head and Neck Cancer Radiotherapy.
    Strijbis VIJ; Dahele M; Gurney-Champion OJ; Blom GJ; Vergeer MR; Slotman BJ; Verbakel WFAR
    Cancers (Basel); 2022 Nov; 14(22):. PubMed ID: 36428593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AAR-LN-DQ: Automatic anatomy recognition based disease quantification in thoracic lymph node zones via FDG PET/CT images without Nodal Delineation.
    Xu G; Udupa JK; Tong Y; Odhner D; Cao H; Torigian DA
    Med Phys; 2020 Aug; 47(8):3467-3484. PubMed ID: 32418221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of deep learning networks for fully automated head and neck tumor delineation on multi-centric PET/CT images.
    Wang Y; Lombardo E; Huang L; Avanzo M; Fanetti G; Franchin G; Zschaeck S; Weingärtner J; Belka C; Riboldi M; Kurz C; Landry G
    Radiat Oncol; 2024 Jan; 19(1):3. PubMed ID: 38191431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of lymph node area coverage with total marrow irradiation and implementation of total marrow and lymphoid irradiation using automated deep learning-based segmentation.
    Choi HS; Kang HC; Chie EK; Shin KH; Chang JH; Jang BS
    PLoS One; 2024; 19(3):e0299448. PubMed ID: 38457432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-learning-based image registration and automatic segmentation of organs-at-risk in cone-beam CT scans from high-dose radiation treatment of pancreatic cancer.
    Han X; Hong J; Reyngold M; Crane C; Cuaron J; Hajj C; Mann J; Zinovoy M; Greer H; Yorke E; Mageras G; Niethammer M
    Med Phys; 2021 Jun; 48(6):3084-3095. PubMed ID: 33905539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model.
    Ma X; Xia L; Chen J; Wan W; Zhou W
    Eur Radiol; 2023 Mar; 33(3):1949-1962. PubMed ID: 36169691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TMTV-Net: fully automated total metabolic tumor volume segmentation in lymphoma PET/CT images - a multi-center generalizability analysis.
    Yousefirizi F; Klyuzhin IS; O JH; Harsini S; Tie X; Shiri I; Shin M; Lee C; Cho SY; Bradshaw TJ; Zaidi H; Bénard F; Sehn LH; Savage KJ; Steidl C; Uribe CF; Rahmim A
    Eur J Nucl Med Mol Imaging; 2024 Jun; 51(7):1937-1954. PubMed ID: 38326655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Segmentation Using Deep Learning to Enable Online Dose Optimization During Adaptive Radiation Therapy of Cervical Cancer.
    Rigaud B; Anderson BM; Yu ZH; Gobeli M; Cazoulat G; Söderberg J; Samuelsson E; Lidberg D; Ward C; Taku N; Cardenas C; Rhee DJ; Venkatesan AM; Peterson CB; Court L; Svensson S; Löfman F; Klopp AH; Brock KK
    Int J Radiat Oncol Biol Phys; 2021 Mar; 109(4):1096-1110. PubMed ID: 33181248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning for fully automated segmentation and volumetry of Couinaud liver segments and future liver remnants shown with CT before major hepatectomy: a validation study of a predictive model.
    Xie T; Li Y; Lin Z; Liu X; Zhang X; Zhang Y; Zhang D; Cheng G; Wang X
    Quant Imaging Med Surg; 2023 May; 13(5):3088-3103. PubMed ID: 37179921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a deep learning model for traumatic brain injury detection and NIRIS grading on non-contrast CT: a multi-reader study with promising results and opportunities for improvement.
    Jiang B; Ozkara BB; Creeden S; Zhu G; Ding VY; Chen H; Lanzman B; Wolman D; Shams S; Trinh A; Li Y; Khalaf A; Parker JJ; Halpern CH; Wintermark M
    Neuroradiology; 2023 Nov; 65(11):1605-1617. PubMed ID: 37269414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the performance of a deep learning-based lung gross tumour volume segmentation algorithm before and after transfer learning in a new hospital.
    Kulkarni C; Sherkhane U; Jaiswar V; Mithun S; Mysore Siddu D; Rangarajan V; Dekker A; Traverso A; Jha A; Wee L
    BJR Open; 2024 Jan; 6(1):tzad008. PubMed ID: 38352184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiautomated pelvic lymph node treatment response evaluation for patients with advanced prostate cancer: based on MET-RADS-P guidelines.
    Liu X; Zhu Z; Wang K; Zhang Y; Li J; Wang X; Zhang X; Wang X
    Cancer Imaging; 2023 Jan; 23(1):7. PubMed ID: 36650584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss.
    Xu Y; Klyuzhin I; Harsini S; Ortiz A; Zhang S; Bénard F; Dodhia R; Uribe CF; Rahmim A; Lavista Ferres J
    Comput Biol Med; 2023 May; 158():106882. PubMed ID: 37037147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.
    Bagci U; Foster B; Miller-Jaster K; Luna B; Dey B; Bishai WR; Jonsson CB; Jain S; Mollura DJ
    EJNMMI Res; 2013 Jul; 3(1):55. PubMed ID: 23879987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auto-detection and segmentation of involved lymph nodes in HPV-associated oropharyngeal cancer using a convolutional deep learning neural network.
    Taku N; Wahid KA; van Dijk LV; Sahlsten J; Jaskari J; Kaski K; Fuller CD; Naser MA
    Clin Transl Radiat Oncol; 2022 Sep; 36():47-55. PubMed ID: 35782963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.