BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 38316786)

  • 1. Microtubules provide force to promote membrane uncoating in vacuolar escape for a cyto-invasive bacterial pathogen.
    Chang YY; Valenzuela C; Lensen A; Lopez-Montero N; Sidik S; Salogiannis J; Enninga J; Rohde J
    Nat Commun; 2024 Feb; 15(1):1065. PubMed ID: 38316786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shigella hijacks the exocyst to cluster macropinosomes for efficient vacuolar escape.
    Chang YY; Stévenin V; Duchateau M; Giai Gianetto Q; Hourdel V; Rodrigues CD; Matondo M; Reiling N; Enninga J
    PLoS Pathog; 2020 Aug; 16(8):e1008822. PubMed ID: 32866204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shigella generates distinct IAM subpopulations during epithelial cell invasion to promote efficient intracellular niche formation.
    Sanchez L; Lensen A; Connor MG; Hamon M; Enninga J; Valenzuela C
    Eur J Cell Biol; 2024 Mar; 103(1):151381. PubMed ID: 38183814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-translational targeting of Rab35 by the effector IcsB of Shigella determines intracellular bacterial niche formation.
    Mellouk N; Lensen A; Lopez-Montero N; Gil M; Valenzuela C; Klinkert K; Moneron G; Swistak L; DiGregorio D; Echard A; Enninga J
    Cell Rep; 2024 Apr; 43(4):114034. PubMed ID: 38568808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escape of Actively Secreting Shigella flexneri from ATG8/LC3-Positive Vacuoles Formed during Cell-To-Cell Spread Is Facilitated by IcsB and VirA.
    Campbell-Valois FX; Sachse M; Sansonetti PJ; Parsot C
    mBio; 2015 May; 6(3):e02567-14. PubMed ID: 26015503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverted recycling-Shigella subversion of Rabs.
    López-Montero N; Enninga J
    Small GTPases; 2018 Sep; 9(5):365-374. PubMed ID: 27763815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Cytosolic
    Piro AS; Hernandez D; Luoma S; Feeley EM; Finethy R; Yirga A; Frickel EM; Lesser CF; Coers J
    mBio; 2017 Dec; 8(6):. PubMed ID: 29233899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. At the crossroads: communication of bacteria-containing vacuoles with host organelles.
    Santos JC; Enninga J
    Cell Microbiol; 2016 Mar; 18(3):330-9. PubMed ID: 26762760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macropinosomes are Key Players in Early Shigella Invasion and Vacuolar Escape in Epithelial Cells.
    Weiner A; Mellouk N; Lopez-Montero N; Chang YY; Souque C; Schmitt C; Enninga J
    PLoS Pathog; 2016 May; 12(5):e1005602. PubMed ID: 27182929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial, Temporal, and Functional Assessment of LC3-Dependent Autophagy in Shigella flexneri Dissemination.
    Weddle E; Agaisse H
    Infect Immun; 2018 Aug; 86(8):. PubMed ID: 29844234
    [No Abstract]   [Full Text] [Related]  

  • 11. Time-Resolved Fluorescence Microscopy Screens on Host Protein Subversion During Bacterial Cell Invasion.
    Sanchez L; Chang YY; Mellouk N; Enninga J
    Methods Mol Biol; 2022; 2523():113-131. PubMed ID: 35759194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking the dynamic interplay between bacterial and host factors during pathogen-induced vacuole rupture in real time.
    Ray K; Bobard A; Danckaert A; Paz-Haftel I; Clair C; Ehsani S; Tang C; Sansonetti P; Tran GV; Enninga J
    Cell Microbiol; 2010 Apr; 12(4):545-56. PubMed ID: 20070313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchies of host factor dynamics at the entry site of Shigella flexneri during host cell invasion.
    Ehsani S; Santos JC; Rodrigues CD; Henriques R; Audry L; Zimmer C; Sansonetti P; Tran Van Nhieu G; Enninga J
    Infect Immun; 2012 Jul; 80(7):2548-57. PubMed ID: 22526677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin Assembly around the Shigella-Containing Vacuole Promotes Successful Infection.
    Kühn S; Bergqvist J; Gil M; Valenzuela C; Barrio L; Lebreton S; Zurzolo C; Enninga J
    Cell Rep; 2020 May; 31(6):107638. PubMed ID: 32402280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Shigella flexneri type 3 secretion system is required for tyrosine kinase-dependent protrusion resolution, and vacuole escape during bacterial dissemination.
    Kuehl CJ; Dragoi AM; Agaisse H
    PLoS One; 2014; 9(11):e112738. PubMed ID: 25405985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring Shigella flexneri vacuolar escape by flow cytometry.
    Nothelfer K; Dias Rodrigues C; Bobard A; Phalipon A; Enninga J
    Virulence; 2011; 2(1):54-7. PubMed ID: 21317555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages.
    Suzuki S; Mimuro H; Kim M; Ogawa M; Ashida H; Toyotome T; Franchi L; Suzuki M; Sanada T; Suzuki T; Tsutsui H; Núñez G; Sasakawa C
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):E4254-63. PubMed ID: 25246571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The type three secretion system effector protein IpgB1 promotes Shigella flexneri cell-to-cell spread through double-membrane vacuole escape.
    Weddle EA; Köseoğlu VK; DeVasure BA; Agaisse HF
    PLoS Pathog; 2022 Feb; 18(2):e1010380. PubMed ID: 35202448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shigella flexneri regulation of ARF6 activation during bacterial entry via an IpgD-mediated positive feedback loop.
    Garza-Mayers AC; Miller KA; Russo BC; Nagda DV; Goldberg MB
    mBio; 2015 Mar; 6(2):e02584. PubMed ID: 25736891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of Spatiotemporal Regulation of Shigella flexneri Type Three Secretion Activity on Effector Functions: Think Globally, Act Locally.
    Campbell-Valois FX; Pontier SM
    Front Cell Infect Microbiol; 2016; 6():28. PubMed ID: 27014638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.