These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3831683)

  • 41. Measurement of NMR relaxation times using the minimum number of scans.
    Johnson G; Ormerod IE; Tofts PS; Barnes D; du Boulay EP
    Acta Radiol Suppl; 1986; 369():496-9. PubMed ID: 2980539
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gradient echo single scan inversion recovery: application to proton and fluorine relaxation studies.
    Pavuluri K; Ramanathan KV
    Magn Reson Chem; 2016 Feb; 54(2):151-7. PubMed ID: 26364676
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Saturation capability of short phase modulated pulses facilitates the measurement of longitudinal relaxation times of quadrupolar nuclei.
    Makrinich M; Gupta R; Polenova T; Goldbourt A
    Solid State Nucl Magn Reson; 2017; 84():196-203. PubMed ID: 28473217
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Signal strength on a 0.15-T magnetic resonance imager.
    Hardy PA; Bronskill MJ; Henkelman RM
    Med Phys; 1985; 12(5):581-5. PubMed ID: 2995779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimal pulse sequence for imaging hepatic metastases.
    Henkelman RM; Hardy P; Poon PY; Bronskill MJ
    Radiology; 1986 Dec; 161(3):727-34. PubMed ID: 3786723
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved Visualization of Juxtaprosthetic Tissue Using Metal Artifact Reduction Magnetic Resonance Imaging: Experimental and Clinical Optimization of Compressed Sensing SEMAC.
    Jungmann PM; Bensler S; Zingg P; Fritz B; Pfirrmann CW; Sutter R
    Invest Radiol; 2019 Jan; 54(1):23-31. PubMed ID: 30351283
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improvement of duty-cycle heating compensation in NMR spin relaxation experiments.
    Yip GN; Zuiderweg ER
    J Magn Reson; 2005 Oct; 176(2):171-8. PubMed ID: 16009587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [MR coronary angiography with MS-325, a blood pool contrast agent: comparison of an inversion recovery steady-state free precession with an inversion recovery fast low angle shot sequence in volunteers].
    Nassenstein K; Waltering KU; Eggebrecht H; Schlosser T; Hunold P; Barkhausen J
    Rofo; 2006 May; 178(5):508-14. PubMed ID: 16586314
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new pulse sequence for determining T1 and T2 simultaneously.
    Graumann R; Fischer H; Oppelt A
    Med Phys; 1986; 13(5):644-7. PubMed ID: 3784990
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetic resonance imaging. Part I--physical principles.
    Hendee WR; Morgan CJ
    West J Med; 1984 Oct; 141(4):491-500. PubMed ID: 6506686
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MR imaging technology: maximizing the signal-to-noise ratio from a single tissue.
    Hendrick RE; Newman FD; Hendee WR
    Radiology; 1985 Sep; 156(3):749-52. PubMed ID: 4023237
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of signal-to-noise ratio in calculated T1 images derived from two spin-echo images.
    Prato FS; Drost DJ; Keys T; Laxon P; Comissiong B; Sestini E
    Magn Reson Med; 1986 Feb; 3(1):63-75. PubMed ID: 3959891
    [TBL] [Abstract][Full Text] [Related]  

  • 53. White and gray matter contrast enhancement in MR images of the mouse brain in vivo using IR UTE with a cryo-coil at 9.4 T.
    Piędzia W; Jasiński K; Kalita K; Tomanek B; Węglarz WP
    J Neurosci Methods; 2014 Jul; 232():30-5. PubMed ID: 24809244
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Linewidth-resolved 15N HSQC, a simple 3D method to measure 15N relaxation times from T1 and T2 linewidths.
    Heikkinen S; Kilpeläinen I
    J Magn Reson; 2001 Aug; 151(2):314-9. PubMed ID: 11531353
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Magnetic Resonance Fingerprinting with short relaxation intervals.
    Amthor T; Doneva M; Koken P; Sommer K; Meineke J; Börnert P
    Magn Reson Imaging; 2017 Sep; 41():22-28. PubMed ID: 28666939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new pulse sequence for "fast recovery" fast-scan NMR imaging.
    Iwaoka H; Sugiyama T; Matsuura H; Fujino K
    IEEE Trans Med Imaging; 1984; 3(1):41-6. PubMed ID: 18234609
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Compressed Sensing SEMAC: 8-fold Accelerated High Resolution Metal Artifact Reduction MRI of Cobalt-Chromium Knee Arthroplasty Implants.
    Fritz J; Ahlawat S; Demehri S; Thawait GK; Raithel E; Gilson WD; Nittka M
    Invest Radiol; 2016 Oct; 51(10):666-76. PubMed ID: 27518214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous measurements of T1 and T2 during fast polymerization reaction using continuous wave-free precession NMR method.
    Venâncio T; Colnago LA
    Magn Reson Chem; 2012 Aug; 50(8):534-8. PubMed ID: 22715054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Routine clinical brain MRI sequences for use at 3.0 Tesla.
    Lu H; Nagae-Poetscher LM; Golay X; Lin D; Pomper M; van Zijl PC
    J Magn Reson Imaging; 2005 Jul; 22(1):13-22. PubMed ID: 15971174
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Very short NMR relaxation times of anions in ionic liquids: new pulse sequence to eliminate the acoustic ringing.
    Klimavicius V; Gdaniec Z; Balevicius V
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Nov; 132():879-83. PubMed ID: 24938418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.