These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 38317052)

  • 21. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DeepLoc: prediction of protein subcellular localization using deep learning.
    Almagro Armenteros JJ; Sønderby CK; Sønderby SK; Nielsen H; Winther O
    Bioinformatics; 2017 Nov; 33(21):3387-3395. PubMed ID: 29036616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. rBPDL:Predicting RNA-Binding Proteins Using Deep Learning.
    Niu M; Wu J; Zou Q; Liu Z; Xu L
    IEEE J Biomed Health Inform; 2021 Sep; 25(9):3668-3676. PubMed ID: 33780344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PreRBP-TL: prediction of species-specific RNA-binding proteins based on transfer learning.
    Zhang J; Yan K; Chen Q; Liu B
    Bioinformatics; 2022 Apr; 38(8):2135-2143. PubMed ID: 35176130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RBPsuite: RNA-protein binding sites prediction suite based on deep learning.
    Pan X; Fang Y; Li X; Yang Y; Shen HB
    BMC Genomics; 2020 Dec; 21(1):884. PubMed ID: 33297946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning.
    Horlacher M; Wagner N; Moyon L; Kuret K; Goedert N; Salvatore M; Ule J; Gagneur J; Winther O; Marsico A
    Genome Biol; 2023 Aug; 24(1):180. PubMed ID: 37542318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture.
    Wang Z; Lei X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. mRNALocater: Enhance the prediction accuracy of eukaryotic mRNA subcellular localization by using model fusion strategy.
    Tang Q; Nie F; Kang J; Chen W
    Mol Ther; 2021 Aug; 29(8):2617-2623. PubMed ID: 33823302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DeepDISOBind: accurate prediction of RNA-, DNA- and protein-binding intrinsically disordered residues with deep multi-task learning.
    Zhang F; Zhao B; Shi W; Li M; Kurgan L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34905768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circ-LocNet: A Computational Framework for Circular RNA Sub-Cellular Localization Prediction.
    Asim MN; Ibrahim MA; Imran Malik M; Dengel A; Ahmed S
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Matrix-screening reveals a vast potential for direct protein-protein interactions among RNA binding proteins.
    Lang B; Yang JS; Garriga-Canut M; Speroni S; Aschern M; Gili M; Hoffmann T; Tartaglia GG; Maurer SP
    Nucleic Acids Res; 2021 Jul; 49(12):6702-6721. PubMed ID: 34133714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved Predicting of The Sequence Specificities of RNA Binding Proteins by Deep Learning.
    Tayara H; Chong KT
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2526-2534. PubMed ID: 32191896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unified mRNA Subcellular Localization Predictor based on machine learning techniques.
    Musleh S; Arif M; Alajez NM; Alam T
    BMC Genomics; 2024 Feb; 25(1):151. PubMed ID: 38326777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. mCarts: Genome-Wide Prediction of Clustered Sequence Motifs as Binding Sites for RNA-Binding Proteins.
    Weyn-Vanhentenryck SM; Zhang C
    Methods Mol Biol; 2016; 1421():215-26. PubMed ID: 26965268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of mRNA subcellular localization using deep recurrent neural networks.
    Yan Z; Lécuyer E; Blanchette M
    Bioinformatics; 2019 Jul; 35(14):i333-i342. PubMed ID: 31510698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting dynamic cellular protein-RNA interactions by deep learning using in vivo RNA structures.
    Sun L; Xu K; Huang W; Yang YT; Li P; Tang L; Xiong T; Zhang QC
    Cell Res; 2021 May; 31(5):495-516. PubMed ID: 33623109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi-scale deep learning for the imbalanced multi-label protein subcellular localization prediction based on immunohistochemistry images.
    Wang F; Wei L
    Bioinformatics; 2022 Apr; 38(9):2602-2611. PubMed ID: 35212728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network.
    Wu H; Pan X; Yang Y; Shen HB
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34297803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNAlight: a machine learning model to identify nucleotide features determining RNA subcellular localization.
    Yuan GH; Wang Y; Wang GZ; Yang L
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36464487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.