These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 38317714)
1. Divergent roles of the regulatory subunits of class IA PI3K. Kim CW; Lee JM; Park SW Front Endocrinol (Lausanne); 2023; 14():1152579. PubMed ID: 38317714 [TBL] [Abstract][Full Text] [Related]
3. Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement. Brachmann SM; Yballe CM; Innocenti M; Deane JA; Fruman DA; Thomas SM; Cantley LC Mol Cell Biol; 2005 Apr; 25(7):2593-606. PubMed ID: 15767666 [TBL] [Abstract][Full Text] [Related]
6. The Opposing Roles of PIK3R1/p85α and PIK3R2/p85β in Cancer. Vallejo-Díaz J; Chagoyen M; Olazabal-Morán M; González-García A; Carrera AC Trends Cancer; 2019 Apr; 5(4):233-244. PubMed ID: 30961830 [TBL] [Abstract][Full Text] [Related]
7. The regulatory subunits of PI3K, p85α and p85β, differentially affect BRD7-mediated regulation of insulin signaling. Lee JM; Liu R; Park SW J Mol Cell Biol; 2022 Jan; 13(12):889-901. PubMed ID: 34751372 [TBL] [Abstract][Full Text] [Related]
9. Domain analysis reveals striking functional differences between the regulatory subunits of phosphatidylinositol 3-kinase (PI3K), p85α and p85β. Ito Y; Vogt PK; Hart JR Oncotarget; 2017 Aug; 8(34):55863-55876. PubMed ID: 28915558 [TBL] [Abstract][Full Text] [Related]
10. Altered signaling and cell cycle regulation in embryonal stem cells with a disruption of the gene for phosphoinositide 3-kinase regulatory subunit p85alpha. Hallmann D; Trümper K; Trusheim H; Ueki K; Kahn CR; Cantley LC; Fruman DA; Hörsch D J Biol Chem; 2003 Feb; 278(7):5099-108. PubMed ID: 12435753 [TBL] [Abstract][Full Text] [Related]
11. Increased P85alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. Barbour LA; Mizanoor Rahman S; Gurevich I; Leitner JW; Fischer SJ; Roper MD; Knotts TA; Vo Y; McCurdy CE; Yakar S; Leroith D; Kahn CR; Cantley LC; Friedman JE; Draznin B J Biol Chem; 2005 Nov; 280(45):37489-94. PubMed ID: 16166093 [TBL] [Abstract][Full Text] [Related]
12. Calorie Restriction-Induced Increase in Skeletal Muscle Insulin Sensitivity Is Not Prevented by Overexpression of the p55α Subunit of Phosphoinositide 3-Kinase. Martins VF; Tahvilian S; Kang JH; Svensson K; Hetrick B; Chick WS; Schenk S; McCurdy CE Front Physiol; 2018; 9():789. PubMed ID: 29997524 [No Abstract] [Full Text] [Related]
13. Loss of class IA PI3K signaling in muscle leads to impaired muscle growth, insulin response, and hyperlipidemia. Luo J; Sobkiw CL; Hirshman MF; Logsdon MN; Li TQ; Goodyear LJ; Cantley LC Cell Metab; 2006 May; 3(5):355-66. PubMed ID: 16679293 [TBL] [Abstract][Full Text] [Related]
15. Class I(A) PI3Kinase regulatory subunit, p85α, mediates mast cell development through regulation of growth and survival related genes. Krishnan S; Mali RS; Koehler KR; Vemula S; Chatterjee A; Ghosh J; Ramdas B; Ma P; Hashino E; Kapur R PLoS One; 2012; 7(1):e28979. PubMed ID: 22238586 [TBL] [Abstract][Full Text] [Related]
16. Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85alpha regulatory subunit. Ueki K; Algenstaedt P; Mauvais-Jarvis F; Kahn CR Mol Cell Biol; 2000 Nov; 20(21):8035-46. PubMed ID: 11027274 [TBL] [Abstract][Full Text] [Related]
17. The p85beta regulatory subunit of phosphoinositide 3-kinase has unique and redundant functions in B cells. Oak JS; Chen J; Peralta RQ; Deane JA; Fruman DA Autoimmunity; 2009 Aug; 42(5):447-58. PubMed ID: 19811262 [TBL] [Abstract][Full Text] [Related]
18. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Dornan GL; Burke JE Front Immunol; 2018; 9():575. PubMed ID: 29616047 [TBL] [Abstract][Full Text] [Related]
19. The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Park SW; Zhou Y; Lee J; Lu A; Sun C; Chung J; Ueki K; Ozcan U Nat Med; 2010 Apr; 16(4):429-37. PubMed ID: 20348926 [TBL] [Abstract][Full Text] [Related]
20. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cheung LW; Hennessy BT; Li J; Yu S; Myers AP; Djordjevic B; Lu Y; Stemke-Hale K; Dyer MD; Zhang F; Ju Z; Cantley LC; Scherer SE; Liang H; Lu KH; Broaddus RR; Mills GB Cancer Discov; 2011 Jul; 1(2):170-85. PubMed ID: 21984976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]