BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 38318147)

  • 1. Modulation of the vitamin D receptor by traditional Chinese medicines and bioactive compounds: potential therapeutic applications in VDR-dependent diseases.
    Yao M; Oduro PK; Akintibu AM; Yan H
    Front Pharmacol; 2024; 15():1298181. PubMed ID: 38318147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Singly dehydroxylated A-ring analogues of 19-nor-1alpha,25-dihydroxyvitamin D3 and 19-nor-22-oxa-1alpha,25-dihydroxyvitamin D3: novel vitamin D3 analogues with potent transcriptional activity but extremely low affinity for vitamin D receptor.
    Okano T; Nakagawa K; Tsugawa N; Ozono K; Kubodera N; Osawa A; Terada M; Mikami K
    Biol Pharm Bull; 1998 Dec; 21(12):1300-5. PubMed ID: 9881643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin D receptor as a drug discovery target.
    Pinette KV; Yee YK; Amegadzie BY; Nagpal S
    Mini Rev Med Chem; 2003 May; 3(3):193-204. PubMed ID: 12570835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin D receptor signaling and its therapeutic implications: Genome-wide and structural view.
    Carlberg C; Molnár F
    Can J Physiol Pharmacol; 2015 May; 93(5):311-8. PubMed ID: 25741777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin D receptor 2016: novel ligands and structural insights.
    Maestro MA; Molnár F; Mouriño A; Carlberg C
    Expert Opin Ther Pat; 2016 Nov; 26(11):1291-1306. PubMed ID: 27454349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Studies of Vitamin D Nuclear Receptor Ligand-Binding Properties.
    Belorusova AY; Rochel N
    Vitam Horm; 2016; 100():83-116. PubMed ID: 26827949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin D receptor as a therapeutic target for benign prostatic hyperplasia.
    Manchanda PK; Kibler AJ; Zhang M; Ravi J; Bid HK
    Indian J Urol; 2012 Oct; 28(4):377-81. PubMed ID: 23450267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcitriol enhancement of TPA-induced tumorigenic transformation is mediated through vitamin D receptor-dependent and -independent pathways.
    Chang PL; Lee TF; Garretson K; Prince CW
    Clin Exp Metastasis; 1997 Nov; 15(6):580-92. PubMed ID: 9344042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoestrogen regulation of a Vitamin D3 receptor promoter and 1,25-dihydroxyvitamin D3 actions in human breast cancer cells.
    Wietzke JA; Welsh J
    J Steroid Biochem Mol Biol; 2003 Feb; 84(2-3):149-57. PubMed ID: 12710998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.
    Seuter S; Pehkonen P; Heikkinen S; Carlberg C
    Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts.
    Kim S; Shevde NK; Pike JW
    J Bone Miner Res; 2005 Feb; 20(2):305-17. PubMed ID: 15647825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syntheses of 25-Adamantyl-25-alkyl-2-methylidene-1α,25-dihydroxyvitamin D
    Maekawa K; Ishizawa M; Ikawa T; Sajiki H; Matsumoto T; Tokiwa H; Makishima M; Yamada S
    Biomolecules; 2023 Jul; 13(7):. PubMed ID: 37509118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ancient Nuclear Receptor VDR With New Functions: Microbiome and Inflammation.
    Bakke D; Sun J
    Inflamm Bowel Dis; 2018 May; 24(6):1149-1154. PubMed ID: 29718408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nongenotropic, anti-apoptotic signaling of 1alpha,25(OH)2-vitamin D3 and analogs through the ligand binding domain of the vitamin D receptor in osteoblasts and osteocytes. Mediation by Src, phosphatidylinositol 3-, and JNK kinases.
    Vertino AM; Bula CM; Chen JR; Almeida M; Han L; Bellido T; Kousteni S; Norman AW; Manolagas SC
    J Biol Chem; 2005 Apr; 280(14):14130-7. PubMed ID: 15671029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of vitamin D analogs modulating the pocket structure of vitamin D receptor.
    Yamamoto K; Anami Y; Itoh T
    Curr Top Med Chem; 2014; 14(21):2378-87. PubMed ID: 25537068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phenotype and function of murine bone marrow-derived dendritic cells is not affected by the absence of VDR or its ability to bind 1α,25-dihydroxyvitamin D
    Vanherwegen AS; Ferreira GB; Smeets E; Yamamoto Y; Kato S; Overbergh L; Gysemans C; Mathieu C
    J Steroid Biochem Mol Biol; 2016 Nov; 164():239-245. PubMed ID: 26343449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin D receptor ligands: the impact of crystal structures.
    Carlberg C; Molnár F; Mouriño A
    Expert Opin Ther Pat; 2012 Apr; 22(4):417-35. PubMed ID: 22449247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current understanding of the function of the nuclear vitamin D receptor in response to its natural and synthetic ligands.
    Carlberg C
    Recent Results Cancer Res; 2003; 164():29-42. PubMed ID: 12899512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,25-Dihydroxyvitamin D
    Li M; Li L; Zhang L; Hu W; Shen J; Xiao Z; Wu X; Chan FL; Cho CH
    Life Sci; 2017 Jun; 179():88-97. PubMed ID: 28465245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis, and biological studies of the A-ring-modified 1,25-dihydroxyvitamin D3 analogs.
    Takayama H; Kittaka A; Fujishima T; Suhara Y
    Recent Results Cancer Res; 2003; 164():289-317. PubMed ID: 12899530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.