These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38318205)

  • 1. Compositional pretraining improves computational efficiency and matches animal behavior on complex tasks.
    Hocker D; Constantinople CM; Savin C
    bioRxiv; 2024 Nov; ():. PubMed ID: 38318205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Considerations in using recurrent neural networks to probe neural dynamics.
    Kao JC
    J Neurophysiol; 2019 Dec; 122(6):2504-2521. PubMed ID: 31619125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training biologically plausible recurrent neural networks on cognitive tasks with long-term dependencies.
    Soo WWM; Goudar V; Wang XJ
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PsychRNN: An Accessible and Flexible Python Package for Training Recurrent Neural Network Models on Cognitive Tasks.
    Ehrlich DB; Stone JT; Brandfonbrener D; Atanasov A; Murray JD
    eNeuro; 2021; 8(1):. PubMed ID: 33328247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Winning the Lottery With Neural Connectivity Constraints: Faster Learning Across Cognitive Tasks With Spatially Constrained Sparse RNNs.
    Khona M; Chandra S; Ma JJ; Fiete IR
    Neural Comput; 2023 Oct; 35(11):1850-1869. PubMed ID: 37725708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural population dynamics of computing with synaptic modulations.
    Aitken K; Mihalas S
    Elife; 2023 Feb; 12():. PubMed ID: 36820526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks.
    Bitzer S; Kiebel SJ
    Biol Cybern; 2012 Jul; 106(4-5):201-17. PubMed ID: 22581026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstructing computational system dynamics from neural data with recurrent neural networks.
    Durstewitz D; Koppe G; Thurm MI
    Nat Rev Neurosci; 2023 Nov; 24(11):693-710. PubMed ID: 37794121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks.
    Sussillo D; Barak O
    Neural Comput; 2013 Mar; 25(3):626-49. PubMed ID: 23272922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.
    Durstewitz D
    PLoS Comput Biol; 2017 Jun; 13(6):e1005542. PubMed ID: 28574992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structured flexibility in recurrent neural networks via neuromodulation.
    Costacurta JC; Bhandarkar S; Zoltowski DM; Linderman SW
    bioRxiv; 2024 Jul; ():. PubMed ID: 39091788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning dynamical systems by recurrent neural networks from orbits.
    Kimura M; Nakano R
    Neural Netw; 1998 Dec; 11(9):1589-1599. PubMed ID: 12662730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis.
    Wang Y; Wang Y; Lui YW
    Neuroimage; 2018 Sep; 178():385-402. PubMed ID: 29782993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Standardized automated training of rhesus monkeys for neuroscience research in their housing environment.
    Berger M; Calapai A; Stephan V; Niessing M; Burchardt L; Gail A; Treue S
    J Neurophysiol; 2018 Mar; 119(3):796-807. PubMed ID: 29142094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task sub-type states decoding via group deep bidirectional recurrent neural network.
    Zhao S; Fang L; Yang Y; Tang G; Luo G; Han J; Liu T; Hu X
    Med Image Anal; 2024 May; 94():103136. PubMed ID: 38489895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Convolutional and Recurrent Neural Networks for Cell Motility Discrimination and Prediction.
    Kimmel JC; Brack AS; Marshall WF
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):562-574. PubMed ID: 31251191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the Relationship Between Latent Linear Dynamical Systems and Low-Rank Recurrent Neural Network Models.
    Valente A; Ostojic S; Pillow JW
    Neural Comput; 2022 Aug; 34(9):1871-1892. PubMed ID: 35896161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring population dynamics in macaque cortex.
    Meghanath G; Jimenez B; Makin JG
    J Neural Eng; 2023 Nov; 20(5):. PubMed ID: 37875104
    [No Abstract]   [Full Text] [Related]  

  • 20. EleAtt-RNN: Adding Attentiveness to Neurons in Recurrent Neural Networks.
    Zhang P; Xue J; Lan C; Zeng W; Gao Z; Zheng N
    IEEE Trans Image Process; 2019 Sep; ():. PubMed ID: 31484119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.