BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 38318370)

  • 1. Recent advancement and key opportunities of MXenes for electrocatalysis.
    Wu X; Wang Y; Wu ZS
    iScience; 2024 Feb; 27(2):108906. PubMed ID: 38318370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subtle 2D/2D MXene-Based Heterostructures for High-Performance Electrocatalytic Water Splitting.
    Wang J; Yang G; Jiao Y; Yan H; Fu H
    Small Methods; 2024 Feb; ():e2301602. PubMed ID: 38385824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress in the Synthesis Process and Electrocatalytic Application of MXene Materials.
    Wang P; Wang B; Wang R
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion.
    Xiao S; Zheng Y; Wu X; Zhou M; Rong X; Wang L; Tang Y; Liu X; Qiu L; Cheng C
    Small; 2022 Oct; 18(41):e2203281. PubMed ID: 35989101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress of 2D MXene as an Electrode Architecture for Advanced Supercapacitors: A Comprehensive Review.
    Aravind AM; Tomy M; Kuttapan A; Kakkassery Aippunny AM; Suryabai XT
    ACS Omega; 2023 Nov; 8(47):44375-44394. PubMed ID: 38046319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering strategies and active site identification of MXene-based catalysts for electrochemical conversion reactions.
    Zhao Y; Zhang J; Guo X; Cao X; Wang S; Liu H; Wang G
    Chem Soc Rev; 2023 May; 52(9):3215-3264. PubMed ID: 37073529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the synthesis and electrocatalytic application of MXene materials.
    Shuai TY; Zhan QN; Xu HM; Huang CJ; Zhang ZJ; Li GR
    Chem Commun (Camb); 2023 Mar; 59(27):3968-3999. PubMed ID: 36883557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MXene as a Charge Storage Host.
    Okubo M; Sugahara A; Kajiyama S; Yamada A
    Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Heterostructure Constructed by Few-Layered MXenes with a MoS
    Cai Y; Wang Y; Zhang L; Fang R; Wang J
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2833-2847. PubMed ID: 34982527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MXene-Based Micro-Supercapacitors: Ink Rheology, Microelectrode Design and Integrated System.
    Huang H; Yang W
    ACS Nano; 2024 Feb; 18(6):4651-4682. PubMed ID: 38307615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Emergence of 2D MXenes Based Zn-Ion Batteries: Recent Development and Prospects.
    Javed MS; Mateen A; Ali S; Zhang X; Hussain I; Imran M; Shah SSA; Han W
    Small; 2022 Jul; 18(26):e2201989. PubMed ID: 35620957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MXene-Based Nanomaterials for Multifunctional Applications.
    Perera AAPR; Madhushani KAU; Punchihewa BT; Kumar A; Gupta RK
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MXene: fundamentals to applications in electrochemical energy storage.
    Ampong DN; Agyekum E; Agyemang FO; Mensah-Darkwa K; Andrews A; Kumar A; Gupta RK
    Discov Nano; 2023 Feb; 18(1):3. PubMed ID: 36732431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion.
    Lim KRG; Handoko AD; Nemani SK; Wyatt B; Jiang HY; Tang J; Anasori B; Seh ZW
    ACS Nano; 2020 Sep; 14(9):10834-10864. PubMed ID: 32790329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MXene-based Materials for Water Splitting: Synthesis and Modification.
    An C; Dong D; Wu S; Gao L; Chen X; Jiao P; Deng Q; Li J; Hu N
    Chem Asian J; 2023 Jul; 18(14):e202300429. PubMed ID: 37314188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging 2D MXenes for supercapacitors: status, challenges and prospects.
    Hu M; Zhang H; Hu T; Fan B; Wang X; Li Z
    Chem Soc Rev; 2020 Sep; 49(18):6666-6693. PubMed ID: 32781463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MXene-Based Nanocomposites for Piezoelectric and Triboelectric Energy Harvesting Applications.
    Pabba DP; Satthiyaraju M; Ramasdoss A; Sakthivel P; Chidhambaram N; Dhanabalan S; Abarzúa CV; Morel MJ; Udayabhaskar R; Mangalaraja RV; Aepuru R; Kamaraj SK; Murugesan PK; Thirumurugan A
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MXene nanoribbons as electrocatalysts for the hydrogen evolution reaction with fast kinetics.
    Yang X; Gao N; Zhou S; Zhao J
    Phys Chem Chem Phys; 2018 Jul; 20(29):19390-19397. PubMed ID: 30009291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical MXene/transition metal oxide heterostructures for rechargeable batteries, capacitors, and capacitive deionization.
    Xi W; Jin J; Zhang Y; Wang R; Gong Y; He B; Wang H
    Nanoscale; 2022 Aug; 14(33):11923-11944. PubMed ID: 35920652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Modified MXene-Based Nanocomposites for Electrochemical Energy Conversion and Storage.
    Yu H; Wang Y; Jing Y; Ma J; Du CF; Yan Q
    Small; 2019 Jun; 15(25):e1901503. PubMed ID: 31066206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.