These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38318595)
1. The Association of miRNA10a and Glucose Transporters in Oral Squamous Cell Carcinoma With Diabetes: A Pilot Study. R S; R P; Jayaraman S; Palati S Cureus; 2024 Jan; 16(1):e51752. PubMed ID: 38318595 [TBL] [Abstract][Full Text] [Related]
2. miRNA-10a promotes cancer cell proliferation in oral squamous cell carcinoma by upregulating GLUT1 and promoting glucose metabolism. Chen YH; Song Y; Yu YL; Cheng W; Tong X Oncol Lett; 2019 Jun; 17(6):5441-5446. PubMed ID: 31186763 [TBL] [Abstract][Full Text] [Related]
3. Circle RNA hsa_circRNA_100290 serves as a ceRNA for miR-378a to regulate oral squamous cell carcinoma cells growth via Glucose transporter-1 (GLUT1) and glycolysis. Chen X; Yu J; Tian H; Shan Z; Liu W; Pan Z; Ren J J Cell Physiol; 2019 Nov; 234(11):19130-19140. PubMed ID: 31187488 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of microRNA-218 promotes oral squamous cell carcinoma growth by targeting GLUT1 to affect glucose metabolism. Xu XJ; Yuan J; Sun WJ; Chen QY; Lin Y; Tang L; Liang LZ Eur Rev Med Pharmacol Sci; 2018 Nov; 22(22):7726-7734. PubMed ID: 30536316 [TBL] [Abstract][Full Text] [Related]
5. miRNA Associated With Glucose Transporters in Oral Squamous Cell Carcinoma: A Systematic Review. R P; Yuwanati M; Sekaran S; M S Cureus; 2023 Sep; 15(9):e46057. PubMed ID: 37900425 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional regulation of glucose transporters in human oral squamous cell carcinoma cells. Paolini R; Moore C; Matthyssen T; Cirillo N; McCullough M; Farah CS; Botha H; Yap T; Celentano A J Oral Pathol Med; 2022 Sep; 51(8):679-683. PubMed ID: 35920070 [TBL] [Abstract][Full Text] [Related]
7. Long noncoding RNA PVT1 promotes tumor cell proliferation, invasion, migration and inhibits apoptosis in oral squamous cell carcinoma by regulating miR‑150‑5p/GLUT‑1. Li X; Ren H Oncol Rep; 2020 Oct; 44(4):1524-1538. PubMed ID: 32945498 [TBL] [Abstract][Full Text] [Related]
8. MiR-200c inhibited the proliferation of oral squamous cell carcinoma cells by targeting Akt pathway and its downstream Glut1. Yan Y; Yan F; Huang Q Arch Oral Biol; 2018 Dec; 96():52-57. PubMed ID: 30179745 [TBL] [Abstract][Full Text] [Related]
9. LncRNA ELF3-AS1 is involved in the regulation of oral squamous cell carcinoma cell proliferation by reprogramming glucose metabolism. Chu H; Li Z; Gan Z; Yang Z; Wu Z; Rong M Onco Targets Ther; 2019; 12():6857-6863. PubMed ID: 31686842 [TBL] [Abstract][Full Text] [Related]
10. Hypoxia-inducible factor-1α and glucose transporter 1 in the malignant transformation of oral lichen planus. Wang XX; Sun HY; Yang QZ; Guo B; Sai Y; Zhang J Int J Clin Exp Pathol; 2017; 10(8):8369-8376. PubMed ID: 31966688 [TBL] [Abstract][Full Text] [Related]
11. Upregulation of miRNA-196a and miRNA-196b correlates with Bryne's prognostic score in oral squamous cell carcinoma. Singh K; Urs AB; Koner BC; Augustine J; Shrivastava R; Narayan B Pathol Res Pract; 2024 Jan; 253():154954. PubMed ID: 38039741 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the association of OCT3/4 with GLUT1 and CD105 in oral squamous cell carcinoma using dual immunohistochemistry. Derakhshan S; Mahdavi N; Kardouni Khoozestani N; Nasr Esfahani B; Heidarian F; Rahrotaban S; Abdolrahmani A BMC Oral Health; 2022 Jul; 22(1):300. PubMed ID: 35854304 [TBL] [Abstract][Full Text] [Related]
13. Expression of MiRNA-137 in oral squamous cell carcinoma and its clinical significance. Sun C; Li J J BUON; 2018; 23(1):167-172. PubMed ID: 29552778 [TBL] [Abstract][Full Text] [Related]
14. Role and regulation of GLUT1/3 during oral cancer progression and therapy resistance. Kumari A; Jha A; Tiwari A; Nath N; Kumar A; Nagini S; Mishra R Arch Oral Biol; 2023 Jun; 150():105688. PubMed ID: 36989865 [TBL] [Abstract][Full Text] [Related]
15. Novel fluorescent GLUT1 inhibitor for precision detection and fluorescence image-guided surgery in oral squamous cell carcinoma. Tian Y; Tang C; Shi G; Wang G; Du Y; Tian J; Zhang H Int J Cancer; 2022 Aug; 151(3):450-462. PubMed ID: 35478458 [TBL] [Abstract][Full Text] [Related]
16. MicroRNA-155 in oral squamous cell carcinoma: Overexpression, localization, and prognostic potential. Shi LJ; Zhang CY; Zhou ZT; Ma JY; Liu Y; Bao ZX; Jiang WW Head Neck; 2015 Jul; 37(7):970-6. PubMed ID: 24692283 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of lncRNA FEZF1-AS1 in promoting the occurrence and development of oral squamous cell carcinoma through targeting miR-196a. Xu L; Hou TJ; Yang P Eur Rev Med Pharmacol Sci; 2019 Aug; 23(15):6505-6515. PubMed ID: 31378890 [TBL] [Abstract][Full Text] [Related]
18. Gene expression of GLUT isoforms and VHL in oral squamous cell carcinoma. Fukuzumi M; Hamakawa H; Onishi A; Sumida T; Tanioka H Cancer Lett; 2000 Dec; 161(2):133-40. PubMed ID: 11090961 [TBL] [Abstract][Full Text] [Related]
19. Long non-coding RNA CCAT1 is a prognostic biomarker for the progression of oral squamous cell carcinoma via miR-181a-mediated Wnt/β-catenin signaling pathway. Li GH; Ma ZH; Wang X Cell Cycle; 2019 Nov; 18(21):2902-2913. PubMed ID: 31599709 [TBL] [Abstract][Full Text] [Related]
20. Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma cell lines and primary tumors. Ciampi R; Vivaldi A; Romei C; Del Guerra A; Salvadori P; Cosci B; Pinchera A; Elisei R Mol Cell Endocrinol; 2008 Sep; 291(1-2):57-62. PubMed ID: 18571834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]