These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38318710)

  • 1. Vortex-Enhanced Microfluidic Chip for Efficient Mixing and Particle Capturing Combining Acoustics with Inertia.
    Lu Y; Tan W; Mu S; Zhu G
    Anal Chem; 2024 Mar; 96(9):3859-3869. PubMed ID: 38318710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-vortex micromixer based on the synergy of acoustics and inertia for nanoparticle synthesis.
    Lu Y; Tan W; Mu S; Zhu G
    Anal Chim Acta; 2023 Jan; 1239():340742. PubMed ID: 36628735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A weak shear stress microfluidic device based on Viscoelastic Stagnant Region (VSR) for biosensitive particle capture.
    Lu Y; Tan W; Shi X; Liu M; Zhu G
    Talanta; 2021 Oct; 233():122550. PubMed ID: 34215053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting.
    Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D
    Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultra-rapid acoustic micromixer for synthesis of organic nanoparticles.
    Rasouli MR; Tabrizian M
    Lab Chip; 2019 Oct; 19(19):3316-3325. PubMed ID: 31495858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixing characteristics of a bubble mixing microfluidic chip for genomic DNA extraction based on magnetophoresis: CFD simulation and experiment.
    Sun L; K Siddique M; Wang L; Li S
    Electrophoresis; 2021 Nov; 42(21-22):2365-2374. PubMed ID: 33905543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell lysis via acoustically oscillating sharp edges.
    Wang Z; Huang PH; Chen C; Bachman H; Zhao S; Yang S; Huang TJ
    Lab Chip; 2019 Dec; 19(24):4021-4032. PubMed ID: 31720640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Vortex Regulation for Efficient Fluid and Particle Manipulation in Ultra-Low Aspect Ratio Curved Microchannels.
    Shen S; Wang X; Niu Y
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34199145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vortex chip incorporating an orthogonal turn for size-based isolation of circulating cells.
    Rastogi N; Seth P; Bhat R; Sen P
    Anal Chim Acta; 2021 May; 1159():338423. PubMed ID: 33867033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamentals and applications of inertial microfluidics: a review.
    Zhang J; Yan S; Yuan D; Alici G; Nguyen NT; Ebrahimi Warkiani M; Li W
    Lab Chip; 2016 Jan; 16(1):10-34. PubMed ID: 26584257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid acoustofluidic mixing by ultrasonic surface acoustic wave-induced acoustic streaming flow.
    Cha B; Lee SH; Iqrar SA; Yi HG; Kim J; Park J
    Ultrason Sonochem; 2023 Oct; 99():106575. PubMed ID: 37683414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress of Inertial Microfluidics in Principle and Application.
    Gou Y; Jia Y; Wang P; Sun C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation of the dynamics of a rigid spherical particle in a vortical cross-slot flow at moderate inertia.
    Kechagidis K; Owen B; Guillou L; Tse H; Di Carlo D; Krüger T
    Microsyst Nanoeng; 2023; 9():100. PubMed ID: 37519826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the internal structure of straight microchannels on inertial transport behavior of particles.
    Dong H; Huang L; Zhao L
    Heliyon; 2024 Apr; 10(8):e29577. PubMed ID: 38655341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetically actuated artificial cilia for optimum mixing performance in microfluidics.
    Chen CY; Chen CY; Lin CY; Hu YT
    Lab Chip; 2013 Jul; 13(14):2834-9. PubMed ID: 23685964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorting of Particles Using Inertial Focusing and Laminar Vortex Technology: A Review.
    Volpe A; Gaudiuso C; Ancona A
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31510006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Vortex Micropumps and Active Micromixers in Polymer Substrates for Automating Bio-fluidic Manipulation.
    W Lam R; Lei M; Dong Z; Fong Lei K; Li W
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():1297-300. PubMed ID: 17282433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.