BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38318925)

  • 1. Deep-learning methods for unveiling large-scale single-cell transcriptomes.
    Shen X; Li X
    Cancer Biol Med; 2024 Feb; 20(12):972-80. PubMed ID: 38318925
    [No Abstract]   [Full Text] [Related]  

  • 2. Scalable batch-correction approach for integrating large-scale single-cell transcriptomes.
    Shen X; Shen H; Wu D; Feng M; Hu J; Liu J; Yang Y; Yang M; Li Y; Shi L; Chen K; Li X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35947966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data.
    Zuo C; Chen L
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33200787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic data acquisition with deep learning enables cell image-based prediction of transcriptomic phenotypes.
    Jin J; Ogawa T; Hojo N; Kryukov K; Shimizu K; Ikawa T; Imanishi T; Okazaki T; Shiroguchi K
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2210283120. PubMed ID: 36577074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated bulk and single-cell transcriptomes reveal pyroptotic signature in prognosis and therapeutic options of hepatocellular carcinoma by combining deep learning.
    Liu Y; Li H; Zeng T; Wang Y; Zhang H; Wan Y; Shi Z; Cao R; Tang H
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38197309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of deep learning-based pre-processing and clustering approaches for single-cell RNA sequencing data.
    Wang J; Zou Q; Lin C
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34472590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning.
    Deng Y; Bao F; Dai Q; Wu LF; Altschuler SJ
    Nat Methods; 2019 Apr; 16(4):311-314. PubMed ID: 30886411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning in omics: a survey and guideline.
    Zhang Z; Zhao Y; Liao X; Shi W; Li K; Zou Q; Peng S
    Brief Funct Genomics; 2019 Feb; 18(1):41-57. PubMed ID: 30265280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A universal approach for integrating super large-scale single-cell transcriptomes by exploring gene rankings.
    Shen H; Shen X; Feng M; Wu D; Zhang C; Yang Y; Yang M; Hu J; Liu J; Wang W; Li Y; Zhang Q; Yang J; Chen K; Li X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35048121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data.
    Xu F; Wang S; Dai X; Mundra PA; Zheng J
    Methods; 2021 May; 189():65-73. PubMed ID: 33039573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel deep learning-based transcriptome data analysis for drug-drug interaction prediction with an application in diabetes.
    Luo Q; Mo S; Xue Y; Zhang X; Gu Y; Wu L; Zhang J; Sun L; Liu M; Hu Y
    BMC Bioinformatics; 2021 Jun; 22(1):318. PubMed ID: 34116627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying transcriptomic correlates of histology using deep learning.
    Badea L; Stănescu E
    PLoS One; 2020; 15(11):e0242858. PubMed ID: 33237966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning exploration of single-cell and spatially resolved cancer transcriptomics to unravel tumour heterogeneity.
    Halawani R; Buchert M; Chen YP
    Comput Biol Med; 2023 Sep; 164():107274. PubMed ID: 37506451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling the perceptions of Syrian and Turkish citizens afflicted by survivor guilt in the aftermath of the 2023 earthquake: A study based on deep learning.
    Praveen SV; Deepika R
    Asian J Psychiatr; 2023 Aug; 86():103672. PubMed ID: 37331116
    [No Abstract]   [Full Text] [Related]  

  • 15. Semi-Supervised Deep Learning for Cell Type Identification From Single-Cell Transcriptomic Data.
    Dong X; Chowdhury S; Victor U; Li X; Qian L
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1492-1505. PubMed ID: 35536811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Approach Based on Transcriptome Profile for Data Driven Drug Discovery.
    Kwon EJ; Cha HJ
    Mol Cells; 2023 Jan; 46(1):65-67. PubMed ID: 36697239
    [No Abstract]   [Full Text] [Related]  

  • 17. A deep learning model to classify neoplastic state and tissue origin from transcriptomic data.
    Hong J; Hachem LD; Fehlings MG
    Sci Rep; 2022 Jun; 12(1):9669. PubMed ID: 35690622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Personal transcriptome variation is poorly explained by current genomic deep learning models.
    Huang C; Shuai RW; Baokar P; Chung R; Rastogi R; Kathail P; Ioannidis NM
    Nat Genet; 2023 Dec; 55(12):2056-2059. PubMed ID: 38036790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating bulk RNA-Seq gene expression data based on generative deep learning models and utilizing it for data augmentation.
    Wang Y; Chen Q; Shao H; Zhang R; Shen H
    Comput Biol Med; 2024 Feb; 169():107828. PubMed ID: 38101117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image-based deep learning identifies glioblastoma risk groups with genomic and transcriptomic heterogeneity: a multi-center study.
    Yan J; Sun Q; Tan X; Liang C; Bai H; Duan W; Mu T; Guo Y; Qiu Y; Wang W; Yao Q; Pei D; Zhao Y; Liu D; Duan J; Chen S; Sun C; Wang W; Liu Z; Hong X; Wang X; Guo Y; Xu Y; Liu X; Cheng J; Li ZC; Zhang Z
    Eur Radiol; 2023 Feb; 33(2):904-914. PubMed ID: 36001125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.