These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38318952)

  • 21. Mechanistic insights into the dehydrogenation of formaldehyde, formic acid and methanol using the Pt
    Phan TT; Dao LTT; Giang LPT; Nguyen MT; Nguyen HMT
    J Mol Graph Model; 2022 Mar; 111():108096. PubMed ID: 34875503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determining the role of Pd catalyst morphology and deposition criteria over large area plasmonic metasurfaces during light-enhanced electrochemical oxidation of formic acid.
    Yalavarthi R; Henrotte O; Kment Š; Naldoni A
    J Chem Phys; 2022 Sep; 157(11):114706. PubMed ID: 36137800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the Performance of Pd for Formic Acid Dehydrogenation by Introducing Barium Titanate.
    Wang J; Guo J; Zhou Q; Hu S; Zhang X
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18713-18721. PubMed ID: 38568896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasmon-Enhanced Catalysis: Distinguishing Thermal and Nonthermal Effects.
    Zhang X; Li X; Reish ME; Zhang D; Su NQ; Gutiérrez Y; Moreno F; Yang W; Everitt HO; Liu J
    Nano Lett; 2018 Mar; 18(3):1714-1723. PubMed ID: 29438619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence of Kinetically Relevant Consistency in Thermal and Photo-Thermal HCOOH Decomposition over Pd/LaCrO
    Yuan J; Guo J; He Z; Che L; Chen S; Zhang H
    Chemistry; 2022 Apr; 28(19):e202104623. PubMed ID: 35157331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selective Photocatalytic Dehydrogenation of Formic Acid by an
    Issa Hamoud H; Damacet P; Fan D; Assaad N; Lebedev OI; Krystianiak A; Gouda A; Heintz O; Daturi M; Maurin G; Hmadeh M; El-Roz M
    J Am Chem Soc; 2022 Sep; 144(36):16433-16446. PubMed ID: 36047929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure.
    Rossi TP; Erhart P; Kuisma M
    ACS Nano; 2020 Aug; 14(8):9963-9971. PubMed ID: 32687311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective Deposition of Catalytic Metals on Plasmonic Au Nanocups for Room-Light-Active Photooxidation of
    Zhang H; Lam SH; Guo Y; Yang J; Lu Y; Shao L; Yang B; Xiao L; Wang J
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):51855-51866. PubMed ID: 33908755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dehydrogenation and dehydration of formic acid over orthorhombic molybdenum carbide.
    Agrawal K; Roldan A; Kishore N; Logsdail AJ
    Catal Today; 2022 Feb; 384-386():197-208. PubMed ID: 35992247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmoelectric Potential in Plasmon-Mediated Electrochemistry.
    Ou W; Fan Y; Shen J; Xu Y; Huang D; Zhou B; Lo TW; Li S; Li YY; Lei D; Lu J
    Nano Lett; 2022 Oct; ():. PubMed ID: 36190454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon-Induced Electron-Hole Separation at the Ag/TiO
    Ma J; Gao S
    ACS Nano; 2019 Dec; 13(12):13658-13667. PubMed ID: 31393703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Nanoparticle Size on Plasmon-Driven Reaction Efficiency.
    Kim S; Lee S; Yoon S
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4163-4169. PubMed ID: 35006675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How Peptides Dissociate in Plasmonic Hot Spots.
    Szczerbiński J; Metternich JB; Goubert G; Zenobi R
    Small; 2020 Jan; 16(4):e1905197. PubMed ID: 31894644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin of Superlinear Power Dependence of Reaction Rates in Plasmon-Driven Photocatalysis: A Case Study of Reductive Nitrothiophenol Coupling Reactions.
    Chen K; Wang H
    Nano Lett; 2023 Apr; 23(7):2870-2876. PubMed ID: 36921149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper-Based Plasmonic Catalysis: Recent Advances and Future Perspectives.
    Xin Y; Yu K; Zhang L; Yang Y; Yuan H; Li H; Wang L; Zeng J
    Adv Mater; 2021 Aug; 33(32):e2008145. PubMed ID: 34050979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface-Plasmon-Assisted Growth, Reshaping and Transformation of Nanomaterials.
    Zhang C; Qi J; Li Y; Han Q; Gao W; Wang Y; Dong J
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Revisiting Formic Acid Decomposition by a Graph-Theoretical Approach.
    Ida T; Nishida M; Hori Y
    J Phys Chem A; 2019 Nov; 123(44):9579-9586. PubMed ID: 31625743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.