BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38319101)

  • 1. Metal-Phenolic Networks-Reinforced Extracellular Matrix Scaffold for Bone Regeneration via Combining Radical-Scavenging and Photo-Responsive Regulation of Microenvironment.
    Liu Z; Wang T; Zhang L; Luo Y; Zhao J; Chen Y; Wang Y; Cao W; Zhao X; Lu B; Chen F; Zhou Z; Zheng L
    Adv Healthc Mater; 2024 Jun; 13(15):e2304158. PubMed ID: 38319101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mussel-Inspired Persistent ROS-Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemical-Driven In Situ Nanoassembly.
    Zhou T; Yan L; Xie C; Li P; Jiang L; Fang J; Zhao C; Ren F; Wang K; Wang Y; Zhang H; Guo T; Lu X
    Small; 2019 Jun; 15(25):e1805440. PubMed ID: 31106983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printed Wesselsite Nanosheets Functionalized Scaffold Facilitates NIR-II Photothermal Therapy and Vascularized Bone Regeneration.
    Yang C; Ma H; Wang Z; Younis MR; Liu C; Wu C; Luo Y; Huang P
    Adv Sci (Weinh); 2021 Oct; 8(20):e2100894. PubMed ID: 34396718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic porous scaffolds containing decellularized small intestinal submucosa and Sr
    Cui W; Yang L; Ullah I; Yu K; Zhao Z; Gao X; Liu T; Liu M; Li P; Wang J; Guo X
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35026740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone.
    Qi C; Deng Y; Xu L; Yang C; Zhu Y; Wang G; Wang Z; Wang L
    Theranostics; 2020; 10(2):741-756. PubMed ID: 31903148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats.
    Chen R; Chen HB; Xue PP; Yang WG; Luo LZ; Tong MQ; Zhong B; Xu HL; Zhao YZ; Yuan JD
    J Mater Chem B; 2021 Jan; 9(4):1107-1122. PubMed ID: 33427267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering.
    Carvalho MS; Silva JC; Udangawa RN; Cabral JMS; Ferreira FC; da Silva CL; Linhardt RJ; Vashishth D
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():479-490. PubMed ID: 30889723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Zn
    Jing H; Wu Y; Lin Y; Luo T; Liu H; Luo Z
    Colloids Surf B Biointerfaces; 2024 Jul; 239():113971. PubMed ID: 38759296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-HA Scaffold Functionalized by Extracellular Matrix of Stem Cells Promotes Bone Repair.
    Chi H; Chen G; He Y; Chen G; Tu H; Liu X; Yan J; Wang X
    Int J Nanomedicine; 2020; 15():5825-5838. PubMed ID: 32821104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.
    Prabha RD; Kraft DCE; Harkness L; Melsen B; Varma H; Nair PD; Kjems J; Kassem M
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1537-e1548. PubMed ID: 28967188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printed PCLA scaffold with nano-hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug-resistant bacteria colonization.
    Zhang X; He J; Qiao L; Wang Z; Zheng Q; Xiong C; Yang H; Li K; Lu C; Li S; Chen H; Hu X
    Cell Prolif; 2022 Oct; 55(10):e13289. PubMed ID: 35791492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small molecules modified biomimetic gelatin/hydroxyapatite nanofibers constructing an ideal osteogenic microenvironment with significantly enhanced cranial bone formation.
    Li D; Zhang K; Shi C; Liu L; Yan G; Liu C; Zhou Y; Hu Y; Sun H; Yang B
    Int J Nanomedicine; 2018; 13():7167-7181. PubMed ID: 30464466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Sr-HT-Gahnite on osteogenesis and angiogenesis by adipose derived stem cells for critical-sized calvarial defect repair.
    Wang G; Roohani-Esfahani SI; Zhang W; Lv K; Yang G; Ding X; Zou D; Cui D; Zreiqat H; Jiang X
    Sci Rep; 2017 Jan; 7():41135. PubMed ID: 28106165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes.
    Song Y; Wu H; Gao Y; Li J; Lin K; Liu B; Lei X; Cheng P; Zhang S; Wang Y; Sun J; Bi L; Pei G
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16058-16075. PubMed ID: 32182418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiogenesis-promoted bone repair with silicate-shelled hydrogel fiber scaffolds.
    Dashnyam K; Buitrago JO; Bold T; Mandakhbayar N; Perez RA; Knowles JC; Lee JH; Kim HW
    Biomater Sci; 2019 Nov; 7(12):5221-5231. PubMed ID: 31595890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation of Bony Microenvironment with Extracellular Matrix Doped-Bioactive Ceramics to Enhance Osteoblast Behavior and Delivery of Aspartic Acid-Modified BMP-2 Peptides.
    Zhou J; Xiong Z; Liu M; Yang L; Yao S; Chen K; Yu K; Qu Y; Sun T; Guo X
    Int J Nanomedicine; 2020; 15():8465-8478. PubMed ID: 33149587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.