BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38319356)

  • 1. Facile fabrication of Ti
    Li J; Li N; Hou Y; Fan M; Zhang Y; Zhang Q; Dang F
    Anal Bioanal Chem; 2024 Mar; 416(7):1657-1665. PubMed ID: 38319356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytic acid functionalized Fe
    Zhang K; Hu D; Deng S; Han M; Wang X; Liu H; Liu Y; Xie M
    Mikrochim Acta; 2019 Jan; 186(2):68. PubMed ID: 30627783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of Ti
    He Y; Zhang S; Zhong C; Yang Y; Li G; Ji Y; Lin Z
    Talanta; 2021 Dec; 235():122789. PubMed ID: 34517647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ti(IV) carrying polydopamine-coated, monodisperse-porous SiO
    Salimi K; Usta DD; Çelikbıçak Ö; Pinar A; Salih B; Tuncel A
    Colloids Surf B Biointerfaces; 2017 May; 153():280-290. PubMed ID: 28279934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient separation of phosphopeptides employing a Ti/Nb-functionalized core-shell structure solid-phase extraction nanosphere.
    Liu B; Wang B; Yan Y; Tang K; Ding CF
    Mikrochim Acta; 2021 Jan; 188(2):32. PubMed ID: 33415462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophilic phytic acid-functionalized magnetic dendritic mesoporous silica nanospheres with immobilized Ti
    Hong Y; Zhan Q; Zheng Y; Pu C; Zhao H; Lan M
    Talanta; 2019 May; 197():77-85. PubMed ID: 30771991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of bifunctional TiO2@SiO2-B(OH)2@Fe3O4@TiO2 sandwich-like nanosheets for sequential selective enrichment of phosphopeptides and glycopeptides for mass spectrometric analysis.
    Xu D; Gao M; Deng C; Zhang X
    Anal Bioanal Chem; 2016 Aug; 408(20):5489-97. PubMed ID: 27236315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-shell magnetic bimetallic MOF material for synergistic enrichment of phosphopeptides.
    Cao L; Zhao Y; Chu Z; Zhang X; Zhang W
    Talanta; 2020 Jan; 206():120165. PubMed ID: 31514902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell magnetic microporous covalent organic framework with functionalized Ti(iv) for selective enrichment of phosphopeptides.
    Ding F; Zhao Y; Liu H; Zhang W
    Analyst; 2020 Jun; 145(12):4341-4351. PubMed ID: 32379252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bifunctional MNPs@UIO-66-Arg core-shell-satellite nanocomposites for enrichment of phosphopeptides.
    Zhang Y; Li N; Li J; Fan M; Zhang Q; Dang F
    Mikrochim Acta; 2024 Mar; 191(4):211. PubMed ID: 38502246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO
    Hong Y; Zhan Q; Pu C; Sheng Q; Zhao H; Lan M
    Talanta; 2018 Sep; 187():223-230. PubMed ID: 29853039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step maltose-functionalization of magnetic nanoparticles based on self-assembled oligopeptides for selective enrichment of glycopeptides.
    Zhang L; Yue X; Li N; Shi H; Zhang J; Zhang Z; Dang F
    Anal Chim Acta; 2019 Dec; 1088():63-71. PubMed ID: 31623717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment.
    Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F
    J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific enrichment of phosphopeptides by using magnetic nanocomposites of type Fe
    Li N; Zhang L; Shi H; Li J; Zhang J; Zhang Z; Dang F
    Mikrochim Acta; 2020 Jan; 187(2):144. PubMed ID: 31970520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophilic Phytic Acid-Coated Magnetic Graphene for Titanium(IV) Immobilization as a Novel Hydrophilic Interaction Liquid Chromatography-Immobilized Metal Affinity Chromatography Platform for Glyco- and Phosphopeptide Enrichment with Controllable Selectivity.
    Hong Y; Zhao H; Pu C; Zhan Q; Sheng Q; Lan M
    Anal Chem; 2018 Sep; 90(18):11008-11015. PubMed ID: 30136585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ti
    Xiong Z; Zhang L; Fang C; Zhang Q; Ji Y; Zhang Z; Zhang W; Zou H
    J Mater Chem B; 2014 Jul; 2(28):4473-4480. PubMed ID: 32261549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Preparation of Core-Shell Magnetic Metal-Organic Framework Nanoparticles for the Selective Capture of Phosphopeptides.
    Chen Y; Xiong Z; Peng L; Gan Y; Zhao Y; Shen J; Qian J; Zhang L; Zhang W
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16338-47. PubMed ID: 26156207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic titanium dioxide nanomaterial modified with hydrophilic dicarboxylic ligand for effective enrichment and separation of phosphopeptides and glycopeptides.
    Sun N; Wu H; Shen X
    Mikrochim Acta; 2020 Mar; 187(3):195. PubMed ID: 32124063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-functionalized magnetic bimetallic metal-organic framework composite for highly specific enrichments of phosphopeptides and glycopeptides.
    Pan Y; Zhang C; Xiao R; Zhang L; Zhang W
    Anal Chim Acta; 2021 May; 1158():338412. PubMed ID: 33863420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Controllable Fabrication of Two-Dimensional Magnetic Fe
    Yu L; Luo B; Zhou X; Liu Y; Lan F; Wu Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54665-54676. PubMed ID: 34762403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.