These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 38319391)
1. Plant In Vitro Culture Factories for Pentacyclic Triterpenoid Production. Badjakov I; Dincheva I; Vrancheva R; Georgiev V; Pavlov A Adv Biochem Eng Biotechnol; 2024; 188():17-49. PubMed ID: 38319391 [TBL] [Abstract][Full Text] [Related]
2. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Li Y; Wang J; Li L; Song W; Li M; Hua X; Wang Y; Yuan J; Xue Z Nat Prod Rep; 2023 Aug; 40(8):1303-1353. PubMed ID: 36454108 [TBL] [Abstract][Full Text] [Related]
3. Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production. D'Adamo S; Schiano di Visconte G; Lowe G; Szaub-Newton J; Beacham T; Landels A; Allen MJ; Spicer A; Matthijs M Plant Biotechnol J; 2019 Jan; 17(1):75-87. PubMed ID: 29754445 [TBL] [Abstract][Full Text] [Related]
4. State-of-the-Art and Opportunities for Bioactive Pentacyclic Triterpenes from Native Mexican Plants. Alfaro-Almaguer JA; Mejía-Manzano LA; González-Valdez J Plants (Basel); 2022 Aug; 11(17):. PubMed ID: 36079566 [TBL] [Abstract][Full Text] [Related]
5. Novel targets of pentacyclic triterpenoids in Staphylococcus aureus: A systematic review. Chung PY Phytomedicine; 2020 Jul; 73():152933. PubMed ID: 31103429 [TBL] [Abstract][Full Text] [Related]
6. Biotechnological production of betulinic acid and derivatives and their applications. An T; Zha W; Zi J Appl Microbiol Biotechnol; 2020 Apr; 104(8):3339-3348. PubMed ID: 32112133 [TBL] [Abstract][Full Text] [Related]
7. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus. Huang L; Li J; Ye H; Li C; Wang H; Liu B; Zhang Y Planta; 2012 Nov; 236(5):1571-81. PubMed ID: 22837051 [TBL] [Abstract][Full Text] [Related]
8. Influence of Selected Abiotic Factors on Triterpenoid Biosynthesis and Saponin Secretion in Marigold ( Alsoufi ASM; Pączkowski C; Długosz M; Szakiel A Molecules; 2019 Aug; 24(16):. PubMed ID: 31405141 [TBL] [Abstract][Full Text] [Related]
9. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering. Jin CC; Zhang JL; Song H; Cao YX Microb Cell Fact; 2019 May; 18(1):77. PubMed ID: 31053076 [TBL] [Abstract][Full Text] [Related]
10. Insilico Screening of Pentacyclic Triterpenoids against Vascular Dementia Target's. Roja R; Kalakotla S; Ravula AR; Boyina HK; Navanita SK; Vallika PBS; Gangarapu K; Devarakonda KP; Bakshi V Adv Exp Med Biol; 2023; 1423():237-243. PubMed ID: 37525050 [TBL] [Abstract][Full Text] [Related]
11. The enzymes OSC1 and CYP716A263 produce a high variety of triterpenoids in the latex of Taraxacum koksaghyz. Pütter KM; van Deenen N; Müller B; Fuchs L; Vorwerk K; Unland K; Bröker JN; Scherer E; Huber C; Eisenreich W; Prüfer D; Schulze Gronover C Sci Rep; 2019 Apr; 9(1):5942. PubMed ID: 30976052 [TBL] [Abstract][Full Text] [Related]
12. Modifications in steroid and triterpenoid metabolism in Calendula officinalis plants and hairy root culture in response to chitosan treatment. Rogowska A; Pączkowski C; Szakiel A BMC Plant Biol; 2023 May; 23(1):263. PubMed ID: 37198538 [TBL] [Abstract][Full Text] [Related]
13. Sterols and pentacyclic triterpenoids from nettle root: content and composition as affected by pressurized liquid extraction. Cegledi E; Repajić M; Balbino S; Peričić M; Dragović-Uzelac V J Sci Food Agric; 2023 Jun; 103(8):4058-4067. PubMed ID: 36478201 [TBL] [Abstract][Full Text] [Related]
14. Chromosome-level genome assembly of Prunella vulgaris L. provides insights into pentacyclic triterpenoid biosynthesis. Zhang S; Meng F; Pan X; Qiu X; Li C; Lu S Plant J; 2024 May; 118(3):731-752. PubMed ID: 38226777 [TBL] [Abstract][Full Text] [Related]
15. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Vranová E; Coman D; Gruissem W Annu Rev Plant Biol; 2013; 64():665-700. PubMed ID: 23451776 [TBL] [Abstract][Full Text] [Related]
16. Biosynthesis of Isoprene Units in Gastaldo C; Lipko A; Motsch E; Adam P; Schaeffer P; Rohmer M Molecules; 2019 Nov; 24(23):. PubMed ID: 31779240 [No Abstract] [Full Text] [Related]
17. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis. Singh S; Pal S; Shanker K; Chanotiya CS; Gupta MM; Dwivedi UN; Shasany AK Physiol Plant; 2014 Dec; 152(4):617-33. PubMed ID: 24749735 [TBL] [Abstract][Full Text] [Related]
18. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2α hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories. Dai Z; Liu Y; Sun Z; Wang D; Qu G; Ma X; Fan F; Zhang L; Li S; Zhang X Metab Eng; 2019 Jan; 51():70-78. PubMed ID: 30339834 [TBL] [Abstract][Full Text] [Related]
19. Virus-Induced Silencing of Key Genes Leads to Differential Impact on Withanolide Biosynthesis in the Medicinal Plant, Withania somnifera. Agarwal AV; Singh D; Dhar YV; Michael R; Gupta P; Chandra D; Trivedi PK Plant Cell Physiol; 2018 Feb; 59(2):262-274. PubMed ID: 29165715 [TBL] [Abstract][Full Text] [Related]
20. [Construction of cell factories for production of lupeol in Saccharomyces cerevisiae]. Lin TT; Wang D; Dai ZB; Zhang XL; Huang LQ Zhongguo Zhong Yao Za Zhi; 2016 Mar; 41(6):1008-1015. PubMed ID: 28875662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]