These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 38319799)

  • 1. Pyrolysis-Free Covalent Organic Polymers Directly for Oxygen Electrocatalysis.
    Li X; Chen T; Liu D; Mu Z; Yang B; Xiang Z
    Acc Chem Res; 2024 Feb; ():. PubMed ID: 38319799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Pyrolysis-Free Method Toward Large-Scale Synthesis of Ultra-Highly Efficient Bifunctional Oxygen Electrocatalyst for Zinc-Air Flow Batteries.
    Li X; Liu D; Liu Q; Xiang Z
    Small; 2022 May; 18(21):e2201197. PubMed ID: 35491510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement.
    He Y; Liu S; Priest C; Shi Q; Wu G
    Chem Soc Rev; 2020 Jun; 49(11):3484-3524. PubMed ID: 32342064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries.
    Kundu A; Mallick S; Ghora S; Raj CR
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40172-40199. PubMed ID: 34424683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives.
    Kundu A; Kuila T; Murmu NC; Samanta P; Das S
    Mater Horiz; 2023 Mar; 10(3):745-787. PubMed ID: 36594186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in bifunctional dual-sites single-atom catalysts for oxygen electrocatalysis toward rechargeable zinc-air batteries.
    Xie X; Zhai Z; Peng L; Zhang J; Shang L; Zhang T
    Sci Bull (Beijing); 2023 Nov; 68(22):2862-2875. PubMed ID: 37884426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.
    Tang C; Wang HF; Zhang Q
    Acc Chem Res; 2018 Apr; 51(4):881-889. PubMed ID: 29384364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pt-Based Oxygen Reduction Reaction Catalysts in Proton Exchange Membrane Fuel Cells: Controllable Preparation and Structural Design of Catalytic Layer.
    Li H; Zhao H; Tao B; Xu G; Gu S; Wang G; Chang H
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Initial Covalent Organic Polymer with Closed-F Edges Directly for Proton-Exchange-Membrane Fuel Cells.
    Li X; Liu Q; Yang B; Liao Z; Yan W; Xiang Z
    Adv Mater; 2022 Sep; 34(36):e2204570. PubMed ID: 35863906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced Architectures of Air Electrodes in Zinc-Air Batteries and Hydrogen Fuel Cells.
    Li L; Tang X; Wu B; Huang B; Yuan K; Chen Y
    Adv Mater; 2024 Mar; 36(13):e2308326. PubMed ID: 37823716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Pyrolysis-Free Covalent Organic Polymer for Oxygen Reduction.
    Guo J; Lin CY; Xia Z; Xiang Z
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12567-12572. PubMed ID: 30051963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Efficient Oxygen Reduction Reaction Electrocatalysts Synthesized under Nanospace Confinement of Metal-Organic Framework.
    Guo J; Li Y; Cheng Y; Dai L; Xiang Z
    ACS Nano; 2017 Aug; 11(8):8379-8386. PubMed ID: 28704607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis.
    Chen P; Tong Y; Wu C; Xie Y
    Acc Chem Res; 2018 Nov; 51(11):2857-2866. PubMed ID: 30375850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Catalytic Sites of Metal-Nitrogen-Carbon Oxygen Reduction Electrocatalysts.
    Chen MX; Tong L; Liang HW
    Chemistry; 2021 Jan; 27(1):145-157. PubMed ID: 32706127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Self-Reconstruction of Catalysts in Electrocatalysis.
    Jiang H; He Q; Zhang Y; Song L
    Acc Chem Res; 2018 Nov; 51(11):2968-2977. PubMed ID: 30375841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe-N4 Doped Carbon Nanotube Cathode Catalyst for PEM Fuel Cells.
    Wu Y; Liang G; Chen D; Li Z; Xu J; Huang G; Yang M; Zhang H; Chen J; Xie F; Jin Y; Wang N; Sun S; Meng H
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48923-48933. PubMed ID: 34628849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction.
    Ma Q; Jin H; Zhu J; Li Z; Xu H; Liu B; Zhang Z; Ma J; Mu S
    Adv Sci (Weinh); 2021 Dec; 8(23):e2102209. PubMed ID: 34687174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass-Derived Catalytically Active Carbon Materials for the Air Electrode of Zn-Air Batteries.
    Zhou T; Wu X; Liu S; Wang A; Liu Y; Zhou W; Sun K; Li S; Zhou J; Li B; Jiang J
    ChemSusChem; 2024 Jul; 17(14):e202301779. PubMed ID: 38416074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production.
    Kim JH; Sa YJ; Lim T; Woo J; Joo SH
    Acc Chem Res; 2022 Sep; 55(18):2672-2684. PubMed ID: 36067418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.