BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38319801)

  • 1. Extracting binding energies and binding modes from biomolecular simulations of fragment binding to endothiapepsin.
    Schmitz B; Frieg B; Homeyer N; Jessen G; Gohlke H
    Arch Pharm (Weinheim); 2024 May; 357(5):e2300612. PubMed ID: 38319801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of fragment docking and scoring with the endothiapepsin model system.
    Herbst C; Endres S; Würz R; Sotriffer C
    Arch Pharm (Weinheim); 2024 Jun; 357(6):e2400061. PubMed ID: 38631672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin: Fragment-Based Drug Design Facilitated by Dynamic Combinatorial Chemistry.
    Mondal M; Radeva N; Fanlo-Virgós H; Otto S; Klebe G; Hirsch AK
    Angew Chem Int Ed Engl; 2016 Aug; 55(32):9422-6. PubMed ID: 27400756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of endothiapepsin-fragment complexes from crystallographic fragment screening using a novel, diverse and affordable 96-compound fragment library.
    Huschmann FU; Linnik J; Sparta K; Ühlein M; Wang X; Metz A; Schiebel J; Heine A; Klebe G; Weiss MS; Mueller U
    Acta Crystallogr F Struct Biol Commun; 2016 May; 72(Pt 5):346-55. PubMed ID: 27139825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fragment optimization for GPCRs by molecular dynamics free energy calculations: Probing druggable subpockets of the A
    Matricon P; Ranganathan A; Warnick E; Gao ZG; Rudling A; Lambertucci C; Marucci G; Ezzati A; Jaiteh M; Dal Ben D; Jacobson KA; Carlsson J
    Sci Rep; 2017 Jul; 7(1):6398. PubMed ID: 28743961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site Identification by Ligand Competitive Saturation (SILCS) simulations for fragment-based drug design.
    Faller CE; Raman EP; MacKerell AD; Guvench O
    Methods Mol Biol; 2015; 1289():75-87. PubMed ID: 25709034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Characterization of the Binding and Unbinding of Millimolar Drug Fragments with Molecular Dynamics Simulations.
    Pan AC; Xu H; Palpant T; Shaw DE
    J Chem Theory Comput; 2017 Jul; 13(7):3372-3377. PubMed ID: 28582625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery and Validation of the Binding Poses of Allosteric Fragment Hits to Protein Tyrosine Phosphatase 1b: From Molecular Dynamics Simulations to X-ray Crystallography.
    Greisman JB; Willmore L; Yeh CY; Giordanetto F; Shahamadtar S; Nisonoff H; Maragakis P; Shaw DE
    J Chem Inf Model; 2023 May; 63(9):2644-2650. PubMed ID: 37086179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual fragment preparation for computational fragment-based drug design.
    Ludington JL
    Methods Mol Biol; 2015; 1289():31-41. PubMed ID: 25709031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment Pose Prediction Using Non-equilibrium Candidate Monte Carlo and Molecular Dynamics Simulations.
    Lim NM; Osato M; Warren GL; Mobley DL
    J Chem Theory Comput; 2020 Apr; 16(4):2778-2794. PubMed ID: 32167763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the performance of MM/PBSA and MM/GBSA methods. 10. Prediction reliability of binding affinities and binding poses for RNA-ligand complexes.
    Jiang D; Du H; Zhao H; Deng Y; Wu Z; Wang J; Zeng Y; Zhang H; Wang X; Wang E; Hou T; Hsieh CY
    Phys Chem Chem Phys; 2024 Mar; 26(13):10323-10335. PubMed ID: 38501198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragment informatics and computational fragment-based drug design: an overview and update.
    Sheng C; Zhang W
    Med Res Rev; 2013 May; 33(3):554-98. PubMed ID: 22430881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations.
    Shen M; Zhou S; Li Y; Pan P; Zhang L; Hou T
    Mol Biosyst; 2013 Mar; 9(3):361-74. PubMed ID: 23340525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inspecting the Mechanism of Fragment Hits Binding on SARS-CoV-2 M
    Bissaro M; Bolcato G; Pavan M; Bassani D; Sturlese M; Moro S
    ChemMedChem; 2021 Jul; 16(13):2075-2081. PubMed ID: 33797868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of novel potent drugs for influenza by inhibiting the vital function of neuraminidase via fragment-based drug design (FBDD) and molecular dynamics simulation strategies.
    Bourougaa L; Ouassaf M; Shtaiwi A
    J Biomol Struct Dyn; 2023 Aug; ():1-15. PubMed ID: 37640004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computing Clinically Relevant Binding Free Energies of HIV-1 Protease Inhibitors.
    Wright DW; Hall BA; Kenway OA; Jha S; Coveney PV
    J Chem Theory Comput; 2014 Mar; 10(3):1228-1241. PubMed ID: 24683369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small nonrule of 3 compatible fragment library provides high hit rate of endothiapepsin crystal structures with various fragment chemotypes.
    Köster H; Craan T; Brass S; Herhaus C; Zentgraf M; Neumann L; Heine A; Klebe G
    J Med Chem; 2011 Nov; 54(22):7784-96. PubMed ID: 21972967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rise of molecular simulations in fragment-based drug design (FBDD): an overview.
    Bissaro M; Sturlese M; Moro S
    Drug Discov Today; 2020 Sep; 25(9):1693-1701. PubMed ID: 32592867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing Fragment Binding Poses Prediction Using HSP90 as a Key Study: When Bound Water Makes the Difference.
    Bolcato G; Bissaro M; Sturlese M; Moro S
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33053878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.