BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 38319810)

  • 21. Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes.
    Chen WJ; Li BQ; Zhao CX; Zhao M; Yuan TQ; Sun RC; Huang JQ; Zhang Q
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10732-10745. PubMed ID: 31746521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbonaceous-Material-Induced Gelation of Concentrated Electrolyte Solutions for Application in Lithium-Sulfur Battery Cathodes.
    Motoyoshi R; Li S; Tsuzuki S; Ghosh A; Ueno K; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45403-45413. PubMed ID: 36174225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advances in Hollow Porous Carbon Materials for Lithium-Sulfur Batteries.
    Fu A; Wang C; Pei F; Cui J; Fang X; Zheng N
    Small; 2019 Mar; 15(10):e1804786. PubMed ID: 30721557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Routes to Electrochemically Stable Sulfur Cathodes for Practical Li-S Batteries.
    Li H; Yang H; Ai X
    Adv Mater; 2023 Oct; ():e2305038. PubMed ID: 37867204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries.
    Liu X; Huang JQ; Zhang Q; Mai L
    Adv Mater; 2017 May; 29(20):. PubMed ID: 28160327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advances of Freestanding Cathodes for Li-S Batteries.
    Zhang P; Liu C; Yang Y; Zheng Y; Huo K
    Chem Asian J; 2021 May; 16(10):1172-1183. PubMed ID: 33749152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multifunctional Electrocatalytic Cathodes Derived from Metal-Organic Frameworks for Advanced Lithium-Sulfur Batteries.
    Abdelkader AA; Rodene DD; Norouzi N; Alzharani A; Weeraratne KS; Gupta RB; El-Kaderi HM
    Chemistry; 2020 Nov; 26(61):13896-13903. PubMed ID: 32588456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the Optimization of Catalytic Active Sites in Lithium-Sulfur Batteries.
    Wang P; Xi B; Xiong S
    Acc Chem Res; 2024 Jun; ():. PubMed ID: 38926150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering Strategies for Suppressing the Shuttle Effect in Lithium-Sulfur Batteries.
    Li J; Gao L; Pan F; Gong C; Sun L; Gao H; Zhang J; Zhao Y; Wang G; Liu H
    Nanomicro Lett; 2023 Nov; 16(1):12. PubMed ID: 37947874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical Calculations Facilitating Catalysis for Advanced Lithium-Sulfur Batteries.
    Fang XT; Zhou L; Chen C; Danilov DL; Qiao F; Li H; Notten PHL
    Molecules; 2023 Oct; 28(21):. PubMed ID: 37959724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manipulating Redox Kinetics using p-n Heterojunction Biservice Matrix as both Cathode Sulfur Immobilizer and Anode Lithium Stabilizer for Practical Lithium-Sulfur Batteries.
    Du X; Wen C; Luo Y; Luo D; Yang T; Wu L; Li J; Liu G; Chen Z
    Small; 2023 Nov; 19(47):e2304131. PubMed ID: 37486972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lithium Sulfide Batteries: Addressing the Kinetic Barriers and High First Charge Overpotential.
    Ting LKJ; Gao Y; Wang H; Wang T; Sun J; Wang J
    ACS Omega; 2022 Nov; 7(45):40682-40700. PubMed ID: 36406542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Basal-Plane-Activated Molybdenum Sulfide Nanosheets with Suitable Orbital Orientation as Efficient Electrocatalysts for Lithium-Sulfur Batteries.
    Tian D; Song X; Qiu Y; Sun X; Jiang B; Zhao C; Zhang Y; Xu X; Fan L; Zhang N
    ACS Nano; 2021 Oct; 15(10):16515-16524. PubMed ID: 34590820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering Fe and V Coordinated Bimetallic Oxide Nanocatalyst Enables Enhanced Polysulfides Mediation for High Energy Density Li-S Battery.
    Cheng H; Zhang S; Li S; Gao C; Zhao S; Lu Y; Wang M
    Small; 2022 Jul; 18(28):e2202557. PubMed ID: 35718880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced Polymers in Cathodes and Electrolytes for Lithium-Sulfur Batteries: Progress and Prospects.
    Song Z; Jiang W; Li B; Qu Y; Mao R; Jian X; Hu F
    Small; 2024 May; 20(19):e2308550. PubMed ID: 38282057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlating Polysulfide Solvation Structure with Electrode Kinetics towards Long-Cycling Lithium-Sulfur Batteries.
    Li Z; Hou LP; Yao N; Li XY; Chen ZX; Chen X; Zhang XQ; Li BQ; Zhang Q
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202309968. PubMed ID: 37664907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rational Design of β-NiOOH Nanosheet-Sheathed CNTs as a Highly Efficient Electrocatalyst for Practical Li-S Batteries.
    Wang Z; Lu J; Li S; Guo Y; Lian F; Wang A; Jin Z; Wang W
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58789-58798. PubMed ID: 34865464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ni-CeO
    Kong Y; Ao X; Huang X; Bai J; Zhao S; Zhang J; Tian B
    Adv Sci (Weinh); 2022 Jun; 9(17):e2105538. PubMed ID: 35415972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advanced Nanostructured Materials for Electrocatalysis in Lithium-Sulfur Batteries.
    Song Z; Jiang W; Jian X; Hu F
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strategy of Enhancing the Volumetric Energy Density for Lithium-Sulfur Batteries.
    Liu YT; Liu S; Li GR; Gao XP
    Adv Mater; 2021 Feb; 33(8):e2003955. PubMed ID: 33368710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.