BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38320394)

  • 1. Enhanced metronidazole removal in seawater using a single-chamber bioelectrochemical system.
    Xin H; Chen X; Ye Y; Liao Y; Luo H; Tang CY; Liu G
    Water Res; 2024 Mar; 252():121212. PubMed ID: 38320394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced sulfur recovery and sulfate reduction using single-chamber bioelectrochemical system.
    Huang J; Zeng C; Luo H; Bai J; Liu G; Zhang R
    Sci Total Environ; 2022 Jun; 823():153789. PubMed ID: 35150675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the effects of antibiotics on nitrogen removal and bacterial communities of autotrophic denitrification systems in a three-dimensional biofilm electrode reactor.
    Sun Q; Zhu G
    Environ Pollut; 2022 Dec; 315():120476. PubMed ID: 36272603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterotrophic anodic denitrification coupled with cathodic metals recovery from on-site smelting wastewater with a bioelectrochemical system inoculated with mixed Castellaniella species.
    Amanze C; Anaman R; Wu X; Alhassan SI; Yang K; Fosua BA; Yunhui T; Yu R; Wu X; Shen L; Dolgor E; Zeng W
    Water Res; 2023 Mar; 231():119655. PubMed ID: 36706471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous denitrification and antibiotic degradation of low-C/N-ratio wastewater by a three-dimensional biofilm-electrode reactor: Performance and microbial response.
    Sun Q; Zhu G
    Environ Res; 2022 Jul; 210():112856. PubMed ID: 35150713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogenic sulfur recovery from sulfate-laden antibiotic production wastewater using a single-chamber up-flow bioelectrochemical reactor.
    Tang L; Huang J; Zhuang C; Yang X; Sun L; Lu H
    Water Res; 2024 Jun; 256():121590. PubMed ID: 38631241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete pentachlorophenol biodegradation in a dual-working electrode bioelectrochemical system: Performance and functional microorganism identification.
    Cai X; Li J; Guan F; Luo X; Yu Z; Yuan Y
    Water Res; 2023 Feb; 230():119529. PubMed ID: 36580804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced effect of pyrite on the removal of metronidazole by zero valent iron.
    Linting H; Kun C; Huaping D; Jianfa L; Yimin L
    J Colloid Interface Sci; 2021 Oct; 600():775-783. PubMed ID: 34051465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimetal-oxide (Fe/Co) modified bagasse-waste carbon coated on lead oxide-battery electrode for metronidazole removal.
    Sharan S; Khare P; Shankar R; Mishra NK; Tyagi A
    J Environ Manage; 2023 Dec; 347():119104. PubMed ID: 37793292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode.
    Liang B; Cheng HY; Kong DY; Gao SH; Sun F; Cui D; Kong FY; Zhou AJ; Liu WZ; Ren NQ; Wu WM; Wang AJ; Lee DJ
    Environ Sci Technol; 2013 May; 47(10):5353-61. PubMed ID: 23607616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of diclofenac via sequential reduction-oxidation by Ru/Fe modified biocathode dual-chamber bioelectrochemical system: Performance, pathways and degradation mechanisms.
    Qiu B; Hu Y; Tang C; Chen Y; Cheng J
    Chemosphere; 2022 Mar; 291(Pt 2):132881. PubMed ID: 34774907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Theoretical Study on the Degradation Mechanism, Kinetics, and Ecotoxicity of Metronidazole (MNZ) in •OH- and SO
    Sun J; Chu R; Khan ZUH
    Toxics; 2023 Sep; 11(9):. PubMed ID: 37755806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative removal of metronidazole from aqueous solution by thermally activated persulfate process: kinetics and mechanisms.
    Zhou R; Li T; Su Y; Ma T; Zhang L; Ren H
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2466-2475. PubMed ID: 29127632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ano-cathodophilic biofilm catalyzes both anodic carbon oxidation and cathodic denitrification.
    Cheng KY; Ginige MP; Kaksonen AH
    Environ Sci Technol; 2012 Sep; 46(18):10372-8. PubMed ID: 22931060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of key parameters on simultaneous sulfate reduction and sulfide oxidation in an autotrophic biocathode.
    Blázquez E; Gabriel D; Baeza JA; Guisasola A
    Water Res; 2017 Oct; 123():301-310. PubMed ID: 28675843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of bioelectrochemical systems in treating exhaust gas with power generation: Effects of shock-load, shut-down episodes and microbial community.
    Lin CW; Chang ST; Chen C; Chang SH; Liu SH
    Bioelectrochemistry; 2022 Dec; 148():108260. PubMed ID: 36096073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of metronidazole by TiO
    Tran ML; Fu CC; Juang RS
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28285-28295. PubMed ID: 30078135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems.
    Zhang Y; Li G; Wen J; Xu Y; Sun J; Ning XA; Lu X; Wang Y; Yang Z; Yuan Y
    Chemosphere; 2018 Apr; 196():377-385. PubMed ID: 29316463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous denitrification and electricity generation in a methane-powered bioelectrochemical system.
    Chen L; Guo Y; Zhang S; Ma W
    Water Environ Res; 2023 Aug; 95(8):e10910. PubMed ID: 37461353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of metronidazole on mesophilic and thermophilic fermentation: Biodegradation mechanisms, microbial communities, and reversibility.
    Zhao W; Zhang X; Cai Y; Zhao S; Wang S
    Bioresour Technol; 2022 Oct; 362():127795. PubMed ID: 35988858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.