These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion. Yan X; Zhang K; Yang Y; Deng D; Lyu C; Xu H; Liu W; Du Y Tissue Eng Part C Methods; 2020 May; 26(5):263-275. PubMed ID: 32268824 [TBL] [Abstract][Full Text] [Related]
3. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Rafiq QA; Coopman K; Nienow AW; Hewitt CJ Biotechnol J; 2016 Mar; 11(4):473-86. PubMed ID: 26632496 [TBL] [Abstract][Full Text] [Related]
4. Bioprocess development for cord blood mesenchymal stromal cells on microcarriers in Vertical-Wheel bioreactors. Roberts EL; Lepage SIM; Koch TG; Kallos MS Biotechnol Bioeng; 2024 Jan; 121(1):192-205. PubMed ID: 37772415 [TBL] [Abstract][Full Text] [Related]
5. Microcarriers with Synthetic Hydrogel Surfaces for Stem Cell Expansion. Dias AD; Elicson JM; Murphy WL Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28509413 [TBL] [Abstract][Full Text] [Related]
6. Scalable manufacture of therapeutic mesenchymal stromal cell products on customizable microcarriers in vertical wheel bioreactors that improve direct visualization, product harvest, and cost. Haskell A; White BP; Rogers RE; Goebel E; Lopez MG; Syvyk AE; de Oliveira DA; Barreda HA; Benton J; Benavides OR; Dalal S; Bae E; Zhang Y; Maitland K; Nikolov Z; Liu F; Lee RH; Kaunas R; Gregory CA Cytotherapy; 2024 Apr; 26(4):372-382. PubMed ID: 38363250 [TBL] [Abstract][Full Text] [Related]
7. Dissolvable Gelatin-Based Microcarriers Generated through Droplet Microfluidics for Expansion and Culture of Mesenchymal Stromal Cells. Ng EX; Wang M; Neo SH; Tee CA; Chen CH; Van Vliet KJ Biotechnol J; 2021 Mar; 16(3):e2000048. PubMed ID: 33052012 [TBL] [Abstract][Full Text] [Related]
8. Sub-confluent culture of human mesenchymal stromal cells on biodegradable polycaprolactone microcarriers enhances bone healing of rat calvarial defect. Lam AT; Sim EJ; Shekaran A; Li J; Teo KL; Goggi JL; Reuveny S; Birch WR; Oh SK Cytotherapy; 2019 Jun; 21(6):631-642. PubMed ID: 30975604 [TBL] [Abstract][Full Text] [Related]
9. Large-Scale Expansion and Differentiation of Mesenchymal Stem Cells in Microcarrier-Based Stirred Bioreactors. Sart S; Agathos SN Methods Mol Biol; 2016; 1502():87-102. PubMed ID: 26892015 [TBL] [Abstract][Full Text] [Related]
10. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor. Tsai AC; Ma T Methods Mol Biol; 2016; 1502():77-86. PubMed ID: 27032950 [TBL] [Abstract][Full Text] [Related]
11. A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Carmelo JG; Fernandes-Platzgummer A; Diogo MM; da Silva CL; Cabral JM Biotechnol J; 2015 Aug; 10(8):1235-47. PubMed ID: 26136376 [TBL] [Abstract][Full Text] [Related]
12. Modulation of mesenchymal stromal cell characteristics by microcarrier culture in bioreactors. Hupfeld J; Gorr IH; Schwald C; Beaucamp N; Wiechmann K; Kuentzer K; Huss R; Rieger B; Neubauer M; Wegmeyer H Biotechnol Bioeng; 2014 Nov; 111(11):2290-302. PubMed ID: 24890974 [TBL] [Abstract][Full Text] [Related]
13. Challenges and opportunities in downstream separation processes for mesenchymal stromal cells cultured in microcarrier-based stirred suspension bioreactors. Mawji I; Roberts EL; Dang T; Abraham B; Kallos MS Biotechnol Bioeng; 2022 Nov; 119(11):3062-3078. PubMed ID: 35962467 [TBL] [Abstract][Full Text] [Related]
14. Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. Eibes G; dos Santos F; Andrade PZ; Boura JS; Abecasis MM; da Silva CL; Cabral JM J Biotechnol; 2010 Apr; 146(4):194-7. PubMed ID: 20188771 [TBL] [Abstract][Full Text] [Related]
15. A microcarrier-based cultivation system for expansion of primary mesenchymal stem cells. Frauenschuh S; Reichmann E; Ibold Y; Goetz PM; Sittinger M; Ringe J Biotechnol Prog; 2007; 23(1):187-93. PubMed ID: 17269687 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic-Printed Microcarrier for In Vitro Expansion of Adherent Stem Cells in 3D Culture Platform. Park W; Jang S; Kim TW; Bae J; Oh TI; Lee E Macromol Biosci; 2019 Aug; 19(8):e1900136. PubMed ID: 31268233 [TBL] [Abstract][Full Text] [Related]
17. Biofunctionalization of Cellulose Microcarriers Using a Carbohydrate Binding Module Linked with Fibroblast Growth Factor for the Expansion of Human Umbilical Mesenchymal Stromal Cells in Stirred Suspension Bioreactors. Abraham BD; Gysel E; Kallos MS; Hu J ACS Appl Bio Mater; 2024 Sep; 7(9):5956-5964. PubMed ID: 39190068 [TBL] [Abstract][Full Text] [Related]
18. Clinical-Grade Manufacturing of Therapeutic Human Mesenchymal Stem/Stromal Cells in Microcarrier-Based Culture Systems. Fernandes-Platzgummer A; Carmelo JG; da Silva CL; Cabral JM Methods Mol Biol; 2016; 1416():375-88. PubMed ID: 27236684 [TBL] [Abstract][Full Text] [Related]
19. Dual production of human mesenchymal stromal cells and derived extracellular vesicles in a dissolvable microcarrier-based stirred culture system. Bandarra-Tavares H; Franchi-Mendes T; Ulpiano C; Morini S; Kaur N; Harris-Becker A; Vemuri MC; Cabral JMS; Fernandes-Platzgummer A; da Silva CL Cytotherapy; 2024 Jul; 26(7):749-756. PubMed ID: 38506771 [TBL] [Abstract][Full Text] [Related]
20. Comparison of polystyrene and hydrogel microcarriers for optical imaging of adherent cells. Benavides OR; White BP; Gibbs HC; Kaunas R; Gregory CA; Maitland KC; Walsh AJ J Biomed Opt; 2024 Jun; 29(Suppl 2):S22708. PubMed ID: 38872791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]