These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38320915)

  • 1. Joint optimization of degradation assessment and remaining useful life prediction for bearings with temporal convolutional auto-encoder.
    Ding Y; Jia M; Zhao X; Yan X; Lee CG
    ISA Trans; 2024 Mar; 146():451-462. PubMed ID: 38320915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction.
    Chen D; Qin Y; Wang Y; Zhou J
    ISA Trans; 2021 Aug; 114():44-56. PubMed ID: 33402262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model.
    Yan M; Wang X; Wang B; Chang M; Muhammad I
    ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Method for Remaining Useful Life Prediction of Roller Bearings Involving the Discrepancy and Similarity of Degradation Trajectories.
    Luo H; Bo L; Liu X; Zhang H
    Comput Intell Neurosci; 2021; 2021():2500997. PubMed ID: 34899887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remaining Useful Life prediction of rolling bearings based on risk assessment and degradation state coefficient.
    Li Q; Yan C; Chen G; Wang H; Li H; Wu L
    ISA Trans; 2022 Oct; 129(Pt B):413-428. PubMed ID: 35181005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remaining useful life prognostics of bearings based on convolution attention networks and enhanced transformer.
    Sun N; Tang J; Ye X; Zhang C; Zhu S; Wang S; Sun Y
    Heliyon; 2024 Oct; 10(19):e38317. PubMed ID: 39416821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes.
    Wang D; Xian X; Song C
    IEEE Trans Autom Sci Eng; 2024 Apr; 21(2):1421-1433. PubMed ID: 38595999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machinery Prognostics and High-Dimensional Data Feature Extraction Based on a Transformer Self-Attention Transfer Network.
    Sun S; Peng T; Huang H
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings.
    Kamat PV; Sugandhi R; Kumar S
    PeerJ Comput Sci; 2021; 7():e795. PubMed ID: 34909464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remaining Useful Life Prognostics of Bearings Based on a Novel Spatial Graph-Temporal Convolution Network.
    Li P; Liu X; Yang Y
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A knowledge-data integration framework for rolling element bearing RUL prediction across its life cycle.
    Yang L; Li T; Dong Y; Duan R; Liao Y
    ISA Trans; 2024 Sep; 152():331-357. PubMed ID: 38987043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel transformer-based DL model enhanced by position-sensitive attention and gated hierarchical LSTM for aero-engine RUL prediction.
    Chen X
    Sci Rep; 2024 May; 14(1):10061. PubMed ID: 38698017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network.
    Song L; Wu J; Wang L; Chen G; Shi Y; Liu Z
    Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning.
    Wang Y; Li Y; Lu H; Wang D
    Rev Sci Instrum; 2024 Sep; 95(9):. PubMed ID: 39283188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis.
    Hotait H; Chiementin X; Rasolofondraibe L
    Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A data-driven prognostics method for explicit health index assessment and improved remaining useful life prediction of bearings.
    Bilendo F; Badihi H; Lu N; Jiang B
    ISA Trans; 2021 May; ():. PubMed ID: 33985788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings.
    Zhang C; Zeng M; Fan J; Li X
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network.
    Wang H; Yang J; Shi L; Wang R
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remaining Useful Life Prediction of Rolling Bearings Based on ECA-CAE and Autoformer.
    Zhong J; Li H; Chen Y; Huang C; Zhong S; Geng H
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings.
    Yan X; Xia X; Wang L; Zhang Z
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.