These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38321039)
21. A Dual-Accelerometer System for Detecting Human Movement in a Free-living Environment. Narayanan A; Stewart T; Mackay L Med Sci Sports Exerc; 2020 Jan; 52(1):252-258. PubMed ID: 31361712 [TBL] [Abstract][Full Text] [Related]
22. Wrist Accelerometer Estimates of Physical Activity Intensity During Walking in Older Adults and People Living With Complex Health Conditions: Retrospective Observational Data Analysis Study. Weber KS; Godkin FE; Cornish BF; McIlroy WE; Van Ooteghem K JMIR Form Res; 2023 Mar; 7():e41685. PubMed ID: 36920452 [TBL] [Abstract][Full Text] [Related]
23. Development of an unsupervised machine learning algorithm for the prognostication of walking ability in spinal cord injury patients. DeVries Z; Hoda M; Rivers CS; Maher A; Wai E; Moravek D; Stratton A; Kingwell S; Fallah N; Paquet J; Phan P; Spine J; 2020 Feb; 20(2):213-224. PubMed ID: 31525468 [TBL] [Abstract][Full Text] [Related]
24. Composite activity type and stride-specific energy expenditure estimation model for thigh-worn accelerometry. Lendt C; Hansen N; Froböse I; Stewart T Int J Behav Nutr Phys Act; 2024 Sep; 21(1):99. PubMed ID: 39256837 [TBL] [Abstract][Full Text] [Related]
25. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking. Hu B; Dixon PC; Jacobs JV; Dennerlein JT; Schiffman JM J Biomech; 2018 Apr; 71():37-42. PubMed ID: 29452755 [TBL] [Abstract][Full Text] [Related]
26. Machine learning algorithms can classify outdoor terrain types during running using accelerometry data. Dixon PC; Schütte KH; Vanwanseele B; Jacobs JV; Dennerlein JT; Schiffman JM; Fournier PA; Hu B Gait Posture; 2019 Oct; 74():176-181. PubMed ID: 31539798 [TBL] [Abstract][Full Text] [Related]
27. Accuracy comparison of machine learning algorithms at various wear-locations for activity identification post stroke: A pilot analysis Veerubhotla A; Ehrenberg N; Ibironke O; Pilkar R Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6106-6109. PubMed ID: 34892510 [TBL] [Abstract][Full Text] [Related]
28. Time series classification using a modified LSTM approach from accelerometer-based data: A comparative study for gait cycle detection. Tan HX; Aung NN; Tian J; Chua MCH; Yang YO Gait Posture; 2019 Oct; 74():128-134. PubMed ID: 31518859 [TBL] [Abstract][Full Text] [Related]
29. Activity recognition using a single accelerometer placed at the wrist or ankle. Mannini A; Intille SS; Rosenberger M; Sabatini AM; Haskell W Med Sci Sports Exerc; 2013 Nov; 45(11):2193-203. PubMed ID: 23604069 [TBL] [Abstract][Full Text] [Related]
30. Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification. Ellis K; Kerr J; Godbole S; Staudenmayer J; Lanckriet G Med Sci Sports Exerc; 2016 May; 48(5):933-40. PubMed ID: 26673126 [TBL] [Abstract][Full Text] [Related]
31. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults. Wullems JA; Verschueren SMP; Degens H; Morse CI; Onambélé GL PLoS One; 2017; 12(11):e0188215. PubMed ID: 29155839 [TBL] [Abstract][Full Text] [Related]
32. Sensor-enabled Activity Class Recognition in Preschoolers: Hip versus Wrist Data. Trost SG; Cliff DP; Ahmadi MN; Tuc NV; Hagenbuchner M Med Sci Sports Exerc; 2018 Mar; 50(3):634-641. PubMed ID: 29059107 [TBL] [Abstract][Full Text] [Related]
33. Continuous Digital Monitoring of Walking Speed in Frail Elderly Patients: Noninterventional Validation Study and Longitudinal Clinical Trial. Mueller A; Hoefling HA; Muaremi A; Praestgaard J; Walsh LC; Bunte O; Huber RM; Fürmetz J; Keppler AM; Schieker M; Böcker W; Roubenoff R; Brachat S; Rooks DS; Clay I JMIR Mhealth Uhealth; 2019 Nov; 7(11):e15191. PubMed ID: 31774406 [TBL] [Abstract][Full Text] [Related]
34. Prediction of activity type in preschool children using machine learning techniques. Hagenbuchner M; Cliff DP; Trost SG; Van Tuc N; Peoples GE J Sci Med Sport; 2015 Jul; 18(4):426-31. PubMed ID: 25088983 [TBL] [Abstract][Full Text] [Related]
35. Discrimination of indoor versus outdoor environmental state with machine learning algorithms in myopia observational studies. Ye B; Liu K; Cao S; Sankaridurg P; Li W; Luan M; Zhang B; Zhu J; Zou H; Xu X; He X J Transl Med; 2019 Sep; 17(1):314. PubMed ID: 31533735 [TBL] [Abstract][Full Text] [Related]
36. An open-source tool to identify active travel from hip-worn accelerometer, GPS and GIS data. Procter DS; Page AS; Cooper AR; Nightingale CM; Ram B; Rudnicka AR; Whincup PH; Clary C; Lewis D; Cummins S; Ellaway A; Giles-Corti B; Cook DG; Owen CG Int J Behav Nutr Phys Act; 2018 Sep; 15(1):91. PubMed ID: 30241483 [TBL] [Abstract][Full Text] [Related]
37. Comparison of Machine Learning Algorithms for Heartbeat Detection Based on Accelerometric Signals Produced by a Smart Bed. Hoang ML; Matrella G; Ciampolini P Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544162 [TBL] [Abstract][Full Text] [Related]
38. Validation of an Adapted Questionnaire for Outdoor Walking Among Older Adults: The CHAMPS-OUTDOORS. Akinrolie O; Webber SC; Salbach NM; Barclay R J Aging Phys Act; 2021 Oct; 29(5):843-851. PubMed ID: 33831840 [TBL] [Abstract][Full Text] [Related]
39. Design, development, and evaluation of a local sensor-based gait phase recognition system using a logistic model decision tree for orthosis-control. Farah JD; Baddour N; Lemaire ED J Neuroeng Rehabil; 2019 Feb; 16(1):22. PubMed ID: 30709363 [TBL] [Abstract][Full Text] [Related]
40. Feature selection for elderly faller classification based on wearable sensors. Howcroft J; Kofman J; Lemaire ED J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]