These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38321117)
1. Fast hybrid methods for modeling landslide susceptibility in Ardal County. Xu S Sci Rep; 2024 Feb; 14(1):3003. PubMed ID: 38321117 [TBL] [Abstract][Full Text] [Related]
2. A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping. Moayedi H; Dehrashid AA Environ Sci Pollut Res Int; 2023 Jul; 30(34):82964-82989. PubMed ID: 37336850 [TBL] [Abstract][Full Text] [Related]
3. A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran. Shen Y; Ahmadi Dehrashid A; Bahar RA; Moayedi H; Nasrollahizadeh B Environ Sci Pollut Res Int; 2023 Dec; 30(59):123527-123555. PubMed ID: 37987977 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-based landslide susceptibility mapping. Azarafza M; Azarafza M; Akgün H; Atkinson PM; Derakhshani R Sci Rep; 2021 Dec; 11(1):24112. PubMed ID: 34916586 [TBL] [Abstract][Full Text] [Related]
5. Spatial Landslide Susceptibility Assessment Based on Novel Neural-Metaheuristic Geographic Information System Based Ensembles. Moayedi H; Osouli A; Tien Bui D; Foong LK Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671801 [TBL] [Abstract][Full Text] [Related]
6. Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping. Hong H; Tsangaratos P; Ilia I; Loupasakis C; Wang Y Sci Total Environ; 2020 Nov; 742():140549. PubMed ID: 32629264 [TBL] [Abstract][Full Text] [Related]
7. A python system for regional landslide susceptibility assessment by integrating machine learning models and its application. Guo Z; Guo F; Zhang Y; He J; Li G; Yang Y; Zhang X Heliyon; 2023 Nov; 9(11):e21542. PubMed ID: 38027891 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). Wang Y; Sun D; Wen H; Zhang H; Zhang F Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618 [TBL] [Abstract][Full Text] [Related]
9. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China. Zhou X; Wu W; Lin Z; Zhang G; Chen R; Song Y; Wang Z; Lang T; Qin Y; Ou P; Huangfu W; Zhang Y; Xie L; Huang X; Fu X; Li J; Jiang J; Zhang M; Liu Y; Peng S; Shao C; Bai Y; Zhang X; Liu X; Liu W Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072874 [TBL] [Abstract][Full Text] [Related]
10. Landslide Susceptibility Evaluation of Machine Learning Based on Information Volume and Frequency Ratio: A Case Study of Weixin County, China. He W; Chen G; Zhao J; Lin Y; Qin B; Yao W; Cao Q Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904752 [TBL] [Abstract][Full Text] [Related]
11. Landslide Susceptibility Evaluation Using Different Slope Units Based on BP Neural Network. Huang J; Zeng X; Ding L; Yin Y; Li Y Comput Intell Neurosci; 2022; 2022():9923775. PubMed ID: 35655489 [TBL] [Abstract][Full Text] [Related]
12. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Chen W; Peng J; Hong H; Shahabi H; Pradhan B; Liu J; Zhu AX; Pei X; Duan Z Sci Total Environ; 2018 Jun; 626():1121-1135. PubMed ID: 29898519 [TBL] [Abstract][Full Text] [Related]
13. Combined SBAS-InSAR and PSO-RF Algorithm for Evaluating the Susceptibility Prediction of Landslide in Complex Mountainous Area: A Case Study of Ludian County, China. Xiao B; Zhao J; Li D; Zhao Z; Zhou D; Xi W; Li Y Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298394 [TBL] [Abstract][Full Text] [Related]
14. A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran. Ghasemian B; Shahabi H; Shirzadi A; Al-Ansari N; Jaafari A; Kress VR; Geertsema M; Renoud S; Ahmad A Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214473 [TBL] [Abstract][Full Text] [Related]
15. Landslide susceptibility prediction improvements based on a semi-integrated supervised machine learning model. Yang N; Wang R; Liu Z; Yao Z Environ Sci Pollut Res Int; 2023 Apr; 30(17):50280-50294. PubMed ID: 36792857 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Assessment of Landslide Susceptibility Comparing Statistical Index, Index of Entropy, and Weights of Evidence in the Shangnan Area, China. Liu J; Duan Z Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266593 [TBL] [Abstract][Full Text] [Related]
17. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models. Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153 [TBL] [Abstract][Full Text] [Related]
18. Landslide Susceptibility Prediction Modeling Based on Remote Sensing and a Novel Deep Learning Algorithm of a Cascade-Parallel Recurrent Neural Network. Zhu L; Huang L; Fan L; Huang J; Huang F; Chen J; Zhang Z; Wang Y Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32178235 [TBL] [Abstract][Full Text] [Related]
19. Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling. Zhang T; Han L; Chen W; Shahabi H Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266608 [TBL] [Abstract][Full Text] [Related]
20. Integration of hard and soft supervised machine learning for flood susceptibility mapping. Andaryani S; Nourani V; Haghighi AT; Keesstra S J Environ Manage; 2021 Aug; 291():112731. PubMed ID: 33962279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]