These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 38321125)
1. Evidence the Isc iron-sulfur cluster biogenesis machinery is the source of iron for [NiFe]-cofactor biosynthesis in Escherichia coli. Haase A; Arlt C; Sinz A; Sawers RG Sci Rep; 2024 Feb; 14(1):3026. PubMed ID: 38321125 [TBL] [Abstract][Full Text] [Related]
2. HypD is the scaffold protein for Fe-(CN)2CO cofactor assembly in [NiFe]-hydrogenase maturation. Stripp ST; Soboh B; Lindenstrauss U; Braussemann M; Herzberg M; Nies DH; Sawers RG; Heberle J Biochemistry; 2013 May; 52(19):3289-96. PubMed ID: 23597401 [TBL] [Abstract][Full Text] [Related]
3. Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Stripp ST; Oltmanns J; Müller CS; Ehrenberg D; Schlesinger R; Heberle J; Adrian L; Schünemann V; Pierik AJ; Soboh B Biochem J; 2021 Sep; 478(17):3281-3295. PubMed ID: 34409988 [TBL] [Abstract][Full Text] [Related]
4. The iron-sulfur-containing HypC-HypD scaffold complex of the [NiFe]-hydrogenase maturation machinery is an ATPase. Nutschan K; Golbik RP; Sawers RG FEBS Open Bio; 2019 Dec; 9(12):2072-2079. PubMed ID: 31614069 [TBL] [Abstract][Full Text] [Related]
5. A redox-active HybG-HypD scaffold complex is required for optimal ATPase activity during [NiFe]-hydrogenase maturation in Escherichia coli. Haase A; Sawers RG FEBS Open Bio; 2023 Feb; 13(2):341-351. PubMed ID: 36602404 [TBL] [Abstract][Full Text] [Related]
6. Native mass spectrometry identifies the HybG chaperone as carrier of the Fe(CN) Arlt C; Nutschan K; Haase A; Ihling C; Tänzler D; Sinz A; Sawers RG Sci Rep; 2021 Dec; 11(1):24362. PubMed ID: 34934150 [TBL] [Abstract][Full Text] [Related]
7. The complex between hydrogenase-maturation proteins HypC and HypD is an intermediate in the supply of cyanide to the active site iron of [NiFe]-hydrogenases. Blokesch M; Albracht SP; Matzanke BF; Drapal NM; Jacobi A; Böck A J Mol Biol; 2004 Nov; 344(1):155-67. PubMed ID: 15504408 [TBL] [Abstract][Full Text] [Related]
8. [NiFe]-hydrogenase maturation: isolation of a HypC-HypD complex carrying diatomic CO and CN- ligands. Soboh B; Stripp ST; Muhr E; Granich C; Braussemann M; Herzberg M; Heberle J; Gary Sawers R FEBS Lett; 2012 Nov; 586(21):3882-7. PubMed ID: 23022438 [TBL] [Abstract][Full Text] [Related]
9. Delivery of iron-sulfur clusters to the hydrogen-oxidizing [NiFe]-hydrogenases in Escherichia coli requires the A-type carrier proteins ErpA and IscA. Pinske C; Sawers RG PLoS One; 2012; 7(2):e31755. PubMed ID: 22363723 [TBL] [Abstract][Full Text] [Related]
10. An in vitro reconstitution system to monitor iron transfer to the active site during the maturation of [NiFe]-hydrogenase. Soboh B; Adrian L; Stripp ST J Biol Chem; 2022 Sep; 298(9):102291. PubMed ID: 35868564 [TBL] [Abstract][Full Text] [Related]
11. Structural Insight into [NiFe] Hydrogenase Maturation by Transient Complexes between Hyp Proteins. Miki K; Atomi H; Watanabe S Acc Chem Res; 2020 Apr; 53(4):875-886. PubMed ID: 32227866 [TBL] [Abstract][Full Text] [Related]
12. Maturation of [NiFe]-hydrogenases in Escherichia coli: the HypC cycle. Blokesch M; Böck A J Mol Biol; 2002 Nov; 324(2):287-96. PubMed ID: 12441107 [TBL] [Abstract][Full Text] [Related]
13. Differential effects of isc operon mutations on the biosynthesis and activity of key anaerobic metalloenzymes in Escherichia coli. Jaroschinsky M; Pinske C; Gary Sawers R Microbiology (Reading); 2017 Jun; 163(6):878-890. PubMed ID: 28640740 [TBL] [Abstract][Full Text] [Related]
14. Exchange of a Single Amino Acid Residue in the HybG Chaperone Allows Maturation of All H Haase A; Sawers RG Front Microbiol; 2022; 13():872581. PubMed ID: 35422773 [TBL] [Abstract][Full Text] [Related]
15. Methanosarcina acetivorans contains a functional ISC system for iron-sulfur cluster biogenesis. Deere TM; Prakash D; Lessner FH; Duin EC; Lessner DJ BMC Microbiol; 2020 Oct; 20(1):323. PubMed ID: 33096982 [TBL] [Abstract][Full Text] [Related]
16. The importance of iron in the biosynthesis and assembly of [NiFe]-hydrogenases. Pinske C; Sawers RG Biomol Concepts; 2014 Mar; 5(1):55-70. PubMed ID: 25372742 [TBL] [Abstract][Full Text] [Related]
17. Crystal structures of the HypCD complex and the HypCDE ternary complex: transient intermediate complexes during [NiFe] hydrogenase maturation. Watanabe S; Matsumi R; Atomi H; Imanaka T; Miki K Structure; 2012 Dec; 20(12):2124-37. PubMed ID: 23123111 [TBL] [Abstract][Full Text] [Related]
18. [NiFe]-hydrogenase maturation in vitro: analysis of the roles of the HybG and HypD accessory proteins1. Soboh B; Lindenstrauss U; Granich C; Javed M; Herzberg M; Thomas C; Stripp ST Biochem J; 2014 Dec; 464(2):169-77. PubMed ID: 25184670 [TBL] [Abstract][Full Text] [Related]
19. A universal scaffold for synthesis of the Fe(CN)2(CO) moiety of [NiFe] hydrogenase. Bürstel I; Siebert E; Winter G; Hummel P; Zebger I; Friedrich B; Lenz O J Biol Chem; 2012 Nov; 287(46):38845-53. PubMed ID: 23019332 [TBL] [Abstract][Full Text] [Related]
20. The impact of O(2) on the Fe-S cluster biogenesis requirements of Escherichia coli FNR. Mettert EL; Outten FW; Wanta B; Kiley PJ J Mol Biol; 2008 Dec; 384(4):798-811. PubMed ID: 18938178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]