These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38321840)

  • 1. Transfer-Printing of Insoluble Conducting Polymer for Soft 3D Conformal All-Organic Transistors.
    Zhao P; Wang X; Tong Y; Zhao X; Tang Q; Liu Y
    Small; 2024 Jul; 20(28):e2309263. PubMed ID: 38321840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly stable and flexible transparent conductive polymer electrode patterns for large-scale organic transistors.
    Zhao P; Tang Q; Zhao X; Tong Y; Liu Y
    J Colloid Interface Sci; 2018 Jun; 520():58-63. PubMed ID: 29529461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Performance Full-Photolithographic Top-Contact Conformable Organic Transistors for Soft Electronics.
    Zhao X; Wang S; Ni Y; Tong Y; Tang Q; Liu Y
    Adv Sci (Weinh); 2021 May; 8(9):2004050. PubMed ID: 33977061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directly Patterning Conductive Polymer Electrodes on Organic Semiconductor via In Situ Polymerization in Microchannels for High-Performance Organic Transistors.
    Wang S; Wang Z; Huang Y; Hu Y; Yuan L; Guo S; Zheng L; Chen M; Yang C; Zheng Y; Qi J; Yu L; Li H; Wang W; Ji D; Chen X; Li J; Li L; Hu W
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17852-17860. PubMed ID: 33825449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Approach to Fabricating Stretchable Organic Transistors with Laser-Patterned Ag Nanowire Electrodes.
    Song R; Yao S; Liu Y; Wang H; Dong J; Zhu Y; O'Connor BT
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50675-50683. PubMed ID: 33136358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Polymer Conducting Fibers and 3D Prints via Melt Processing and Templated Polymerization.
    Hofmann AI; Östergren I; Kim Y; Fauth S; Craighero M; Yoon MH; Lund A; Müller C
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8713-8721. PubMed ID: 32043356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Printing Semiconductor-Insulator Polymer Bilayers for High-Performance Coplanar Field-Effect Transistors.
    Bu L; Hu M; Lu W; Wang Z; Lu G
    Adv Mater; 2018 Jan; 30(2):. PubMed ID: 29178351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors.
    Li J; Zhao Y; Tan HS; Guo Y; Di CA; Yu G; Liu Y; Lin M; Lim SH; Zhou Y; Su H; Ong BS
    Sci Rep; 2012; 2():754. PubMed ID: 23082244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing of conducting polymers.
    Yuk H; Lu B; Lin S; Qu K; Xu J; Luo J; Zhao X
    Nat Commun; 2020 Mar; 11(1):1604. PubMed ID: 32231216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically Tunable Organic Dielectric Layer on an Oxide TFT: Poly(
    Kim J; Jang SC; Bae K; Park J; Kim HD; Lahann J; Kim HS; Lee KJ
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43123-43133. PubMed ID: 34472836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photolithographic Rugged Electrode for High-Density Low-Contact-Resistance Coplanar Organic Transistors.
    Xian D; Zhao X; Liu J; Wang B; Tong Y; Tang Q; Liu Y
    Small Methods; 2024 Jan; 8(1):e2300743. PubMed ID: 37800991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Double exposure method": a novel photolithographic process to fabricate flexible organic field-effect transistors and circuits.
    Ji D; Jiang L; Dong H; Meng Q; Wang Z; Zhang H; Hu W
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2316-9. PubMed ID: 23270576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micropunching lithography for generating micro- and submicron-patterns on polymer substrates.
    Chakraborty A; Liu X; Luo C
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copolymer dielectrics with balanced chain-packing density and surface polarity for high-performance flexible organic electronics.
    Ji D; Li T; Zou Y; Chu M; Zhou K; Liu J; Tian G; Zhang Z; Zhang X; Li L; Wu D; Dong H; Miao Q; Fuchs H; Hu W
    Nat Commun; 2018 Jun; 9(1):2339. PubMed ID: 29904130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile fabrication of electrolyte-gated single-crystalline cuprous oxide nanowire field-effect transistors.
    Stoesser A; von Seggern F; Purohit S; Nasr B; Kruk R; Dehm S; Di Wang ; Hahn H; Dasgupta S
    Nanotechnology; 2016 Oct; 27(41):415205. PubMed ID: 27609560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.
    Baeg KJ; Caironi M; Noh YY
    Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance and stable organic transistors and circuits with patterned polypyrrole electrodes.
    Li L; Jiang L; Wang W; Du C; Fuchs H; Hu W; Chi L
    Adv Mater; 2012 Apr; 24(16):2159-64. PubMed ID: 22431264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Conductive Ultrathin Layers of Conjugated Polymers for Metal-Free Coplanar Transistors with Single-Polymer Transport Layers.
    Shen Z; Lu W; Wei P; Zhu Y; Jiang Y; Bu L; Lu G
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12099-12108. PubMed ID: 36808932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hysteresis-Free, High-Performance Polymer-Dielectric Organic Field-Effect Transistors Enabled by Supercritical Fluid.
    Shi Y; Zheng Y; Wang J; Zhao R; Wang T; Zhao C; Chang KC; Meng H; Wang X
    Research (Wash D C); 2020; 2020():6587102. PubMed ID: 33015635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wafer-Recyclable, Eco-Friendly, and Multiscale Dry Transfer Printing by Transferable Photoresist for Flexible Epidermal Electronics.
    Zhou Y; Feng B; Chen L; Fan F; Ji Z; Duan H
    ACS Appl Mater Interfaces; 2024 Mar; 16(11):13525-13533. PubMed ID: 38467516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.