These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38321849)
1. Hydrogen Production through Distinctive C-C Cleavage during Acetic Acid Reforming at Low Temperature. Shen Y; Yang Z; Tang X; Zhang J; Lv G ChemSusChem; 2024 Jun; 17(12):e202301532. PubMed ID: 38321849 [TBL] [Abstract][Full Text] [Related]
2. Low-Temperature Methanol-Water Reforming Over Alcohol Dehydrogenase and Immobilized Ruthenium Complex. Shen Y; Wang L; Xu Z; Ning F; Zhan Y; Bai C; Zhou X ChemSusChem; 2021 Sep; 14(18):3867-3875. PubMed ID: 34310047 [TBL] [Abstract][Full Text] [Related]
3. Assembled Organoruthenium(II) for Formaldehyde Decomposition and Hydrogen Production. Shen Y; Xu Y; Zhan Y Chemphyschem; 2023 Apr; 24(7):e202200695. PubMed ID: 36456526 [TBL] [Abstract][Full Text] [Related]
4. One-Step Reforming of CO Wang L; Yi Y; Wu C; Guo H; Tu X Angew Chem Int Ed Engl; 2017 Oct; 56(44):13679-13683. PubMed ID: 28842938 [TBL] [Abstract][Full Text] [Related]
5. Methanol-Water Aqueous-Phase Reforming with the Assistance of Dehydrogenases at Near-Room Temperature. Shen Y; Zhan Y; Li S; Ning F; Du Y; Huang Y; He T; Zhou X ChemSusChem; 2018 Mar; 11(5):864-871. PubMed ID: 29327513 [TBL] [Abstract][Full Text] [Related]
6. Efficient Water Reforming of Biomass to H Zhang WM; Li Y Angew Chem Int Ed Engl; 2024 Sep; ():e202416867. PubMed ID: 39323252 [TBL] [Abstract][Full Text] [Related]
7. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583 [TBL] [Abstract][Full Text] [Related]
8. Combined Steam Reforming of Methane and Formic Acid To Produce Syngas with an Adjustable H Rahbari A; Ramdin M; van den Broeke LJP; Vlugt TJH Ind Eng Chem Res; 2018 Aug; 57(31):10663-10674. PubMed ID: 30270977 [TBL] [Abstract][Full Text] [Related]
9. Hydrolysis of ketene catalyzed by formic acid: modification of reaction mechanism, energetics, and kinetics with organic acid catalysis. Louie MK; Francisco JS; Verdicchio M; Klippenstein SJ; Sinha A J Phys Chem A; 2015 May; 119(19):4347-57. PubMed ID: 25590617 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM. Özcan MD; Özcan O; Akın AN Environ Technol; 2020 Jan; 41(1):14-28. PubMed ID: 31264942 [TBL] [Abstract][Full Text] [Related]
11. Catalytic Steam Reforming of Biomass-Derived Acetic Acid over Two Supported Ni Catalysts for Hydrogen-Rich Syngas Production. Fu P; Zhang A; Luo S; Yi W; Hu S; Zhang Y ACS Omega; 2019 Aug; 4(8):13585-13593. PubMed ID: 31460488 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical Biomass Upgrading Coupled with Hydrogen Production under Industrial-Level Current Density. Qian Q; He X; Li Z; Chen Y; Feng Y; Cheng M; Zhang H; Wang W; Xiao C; Zhang G; Xie Y Adv Mater; 2023 Jun; 35(25):e2300935. PubMed ID: 36964932 [TBL] [Abstract][Full Text] [Related]
13. Sustainable hydrogen production by ethanol steam reforming using a partially reduced copper-nickel oxide catalyst. Chen LC; Cheng H; Chiang CW; Lin SD ChemSusChem; 2015 May; 8(10):1787-93. PubMed ID: 25876558 [TBL] [Abstract][Full Text] [Related]
14. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen. Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090 [TBL] [Abstract][Full Text] [Related]
15. Multifunctional Pd/Ni-Co catalyst for hydrogen production by chemical looping coupled with steam reforming of acetic acid. Fermoso J; Gil MV; Rubiera F; Chen D ChemSusChem; 2014 Nov; 7(11):3063-77. PubMed ID: 25209388 [TBL] [Abstract][Full Text] [Related]
16. Sustainable routes for acetic acid production: Traditional processes vs a low-carbon, biogas-based strategy. Martín-Espejo JL; Gandara-Loe J; Odriozola JA; Reina TR; Pastor-Pérez L Sci Total Environ; 2022 Sep; 840():156663. PubMed ID: 35710010 [TBL] [Abstract][Full Text] [Related]
17. Methanol steam reforming for hydrogen production over NiTiO Jin Q; Meng X; Wu P; Li Y; Xu M; Zhou R; Yang M; Xu H RSC Adv; 2023 May; 13(24):16342-16351. PubMed ID: 37266498 [TBL] [Abstract][Full Text] [Related]
18. Aqueous phase conversion of CO Ahmad W; Koley P; Dwivedi S; Lakshman R; Shin YK; van Duin ACT; Shrotri A; Tanksale A Nat Commun; 2023 May; 14(1):2821. PubMed ID: 37198184 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic insights into the dehydrogenation of formaldehyde, formic acid and methanol using the Pt Phan TT; Dao LTT; Giang LPT; Nguyen MT; Nguyen HMT J Mol Graph Model; 2022 Mar; 111():108096. PubMed ID: 34875503 [TBL] [Abstract][Full Text] [Related]
20. Sustainable Low-Temperature Hydrogen Production from Lignocellulosic Biomass Passing through Formic Acid: Combination of Biomass Hydrolysis/Oxidation and Formic Acid Dehydrogenation. Park JH; Jin MH; Lee DW; Lee YJ; Song GS; Park SJ; Namkung H; Song KH; Choi YC Environ Sci Technol; 2019 Dec; 53(23):14041-14053. PubMed ID: 31602972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]