These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38321958)

  • 1. Optical Microfiber Intelligent Sensor: Wearable Cardiorespiratory and Behavior Monitoring with a Flexible Wave-Shaped Polymer Optical Microfiber.
    Wang Z; Chen Z; Ma L; Wang Q; Wang H; Leal-Junior A; Li X; Marques C; Min R
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):8333-8345. PubMed ID: 38321958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AI-Assisted Disease Monitoring Using Stretchable Polymer-Based Sensors.
    Li T; Wang Q; Su Y; Qiao F; Pei Q; Li X; Tan Y; Zhou Z
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30924-30934. PubMed ID: 37319270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of intelligent monitoring system based on Internet of Things and wearable technology and exploration of its clinical application mode].
    Li L; Liang H; Fan Y; Yan W; Yan M; Cao D; Zhang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Dec; 40(6):1053-1061. PubMed ID: 38151927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-Core Capacitive Microfiber Sensor for Smart Textile Applications.
    Yu L; Feng Y; S/O M Tamil Selven D; Yao L; Soon RH; Yeo JC; Lim CT
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33347-33355. PubMed ID: 31424908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superelastic, Sensitive, and Low Hysteresis Flexible Strain Sensor Based on Wave-Patterned Liquid Metal for Human Activity Monitoring.
    Chen J; Zhang J; Luo Z; Zhang J; Li L; Su Y; Gao X; Li Y; Tang W; Cao C; Liu Q; Wang L; Li H
    ACS Appl Mater Interfaces; 2020 May; 12(19):22200-22211. PubMed ID: 32315158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Linearity Flexible Pressure Sensor Based on the Gaussian-Curve-Shaped Microstructure for Human Physiological Signal Monitoring.
    Zhu B; Xu Z; Liu X; Wang Z; Zhang Y; Chen Q; Teh KS; Zheng J; Du X; Wu D
    ACS Sens; 2023 Aug; 8(8):3127-3135. PubMed ID: 37471516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review of Wearable Optical Fiber Sensors for Rehabilitation Monitoring.
    Li X; Li Y; Wei H; Wang C; Liu B
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Progress in Wearable Near-Sensor and In-Sensor Intelligent Perception Systems.
    Liu J; Wang Y; Liu Y; Wu Y; Bian B; Shang J; Li R
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Small Highly Sensitive Glucose Sensor Based on a Glucose Oxidase-Modified U-Shaped Microfiber.
    Chen T; Jiang H; Xie K; Xia H
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diaphragm-based optical fiber sensor for pulse wave monitoring and cardiovascular diseases diagnosis.
    Wang J; Liu K; Sun Q; Ni X; Ai F; Wang S; Yan Z; Liu D
    J Biophotonics; 2019 Oct; 12(10):e201900084. PubMed ID: 31219245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Sensor Based on Flexible Sinusoidal Antenna for Strain Sensing Applications.
    Ahadi M; Roudjane M; Dugas MA; Miled A; Messaddeq Y
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial intelligence-driven wearable technologies for neonatal cardiorespiratory monitoring: Part 1 wearable technology.
    Grooby E; Sitaula C; Chang Kwok T; Sharkey D; Marzbanrad F; Malhotra A
    Pediatr Res; 2023 Jan; 93(2):413-425. PubMed ID: 36593282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial intelligence-driven wearable technologies for neonatal cardiorespiratory monitoring. Part 2: artificial intelligence.
    Sitaula C; Grooby E; Kwok TC; Sharkey D; Marzbanrad F; Malhotra A
    Pediatr Res; 2023 Jan; 93(2):426-436. PubMed ID: 36513806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Printed Wearable Vital Sensor for Human Pulse Rate Monitoring using Ferroelectric Polymer.
    Sekine T; Sugano R; Tashiro T; Sato J; Takeda Y; Matsui H; Kumaki D; Domingues Dos Santos F; Miyabo A; Tokito S
    Sci Rep; 2018 Mar; 8(1):4442. PubMed ID: 29535351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors.
    Lu Y; Biswas MC; Guo Z; Jeon JW; Wujcik EK
    Biosens Bioelectron; 2019 Jan; 123():167-177. PubMed ID: 30174272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Stretchable Fiber-Based Sensor toward Intelligent Human-Machine Interactions.
    Li T; Su Y; Chen F; Zheng H; Meng W; Liu Z; Ai Q; Liu Q; Tan Y; Zhou Z
    ACS Appl Mater Interfaces; 2022 May; 14(19):22666-22677. PubMed ID: 35533008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration on flexible wearable sensor motion monitoring based on novel functional polymer conjugated materials.
    Zhang J; Ding H
    Front Chem; 2023; 11():1265211. PubMed ID: 38107253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Materials and Designs for Wearable Photodetectors.
    Cai S; Xu X; Yang W; Chen J; Fang X
    Adv Mater; 2019 May; 31(18):e1808138. PubMed ID: 30785644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Wearable and Real-Time Pulse Wave Monitoring System Based on a Flexible Compound Sensor.
    Kang X; Zhang J; Shao Z; Wang G; Geng X; Zhang Y; Zhang H
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.