BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38322614)

  • 1. Using dropout based active learning and surrogate models in the inverse viscoelastic parameter identification of human brain tissue.
    Hinrichsen J; Ferlay C; Reiter N; Budday S
    Front Physiol; 2024; 15():1321298. PubMed ID: 38322614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can machine learning accelerate soft material parameter identification from complex mechanical test data?
    Kakaletsis S; Lejeune E; Rausch MK
    Biomech Model Mechanobiol; 2023 Feb; 22(1):57-70. PubMed ID: 36229697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics.
    Liang L; Liu M; Elefteriades J; Sun W
    Comput Methods Appl Mech Eng; 2023 Nov; 416():. PubMed ID: 38370344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the potential of transfer learning for metamodels of heterogeneous material deformation.
    Lejeune E; Zhao B
    J Mech Behav Biomed Mater; 2021 May; 117():104276. PubMed ID: 33639456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-fidelity surrogate modeling through hybrid machine learning for biomechanical and finite element analysis of soft tissues.
    Sajjadinia SS; Carpentieri B; Shriram D; Holzapfel GA
    Comput Biol Med; 2022 Sep; 148():105699. PubMed ID: 35715259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the 3D Hyperelastic Behavior of Ventricular Myocardium using a Finite-Element Based Neural-Network Approach.
    Zhang W; Li DS; Bui-Thanh T; Sacks MS
    Comput Methods Appl Mech Eng; 2022 May; 394():. PubMed ID: 35422534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
    Sacks MS; Motiwale S; Goodbrake C; Zhang W
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Approaches to Surrogates for Solving the Diffusion Equation for Mechanistic Real-World Simulations.
    Toledo-Marín JQ; Fox G; Sluka JP; Glazier JA
    Front Physiol; 2021; 12():667828. PubMed ID: 34248661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilizing Data-Driven Optimization to Automate the Parametrization of Kinetic Monte Carlo Models.
    Kouroudis I; Gößwein M; Gagliardi A
    J Phys Chem A; 2023 Jul; 127(28):5967-5978. PubMed ID: 37421601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surrogate models based on machine learning methods for parameter estimation of left ventricular myocardium.
    Cai L; Ren L; Wang Y; Xie W; Zhu G; Gao H
    R Soc Open Sci; 2021 Jan; 8(1):201121. PubMed ID: 33614068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Active Learning for Speeding up Calibration in Simulation Models.
    Cevik M; Ergun MA; Stout NK; Trentham-Dietz A; Craven M; Alagoz O
    Med Decis Making; 2016 Jul; 36(5):581-93. PubMed ID: 26471190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels.
    Kainz MP; Greiner A; Hinrichsen J; Kolb D; Comellas E; Steinmann P; Budday S; Terzano M; Holzapfel GA
    Front Bioeng Biotechnol; 2023; 11():1143304. PubMed ID: 37101751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using machine learning as a surrogate model for agent-based simulations.
    Angione C; Silverman E; Yaneske E
    PLoS One; 2022; 17(2):e0263150. PubMed ID: 35143521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Surrogate Model Based on a Finite Element Model of Abdomen for Real-Time Visualisation of Tissue Stress during Physical Examination Training.
    Leong F; Lai CY; Khosroshahi SF; He L; de Lusignan S; Nanayakkara T; Ghajari M
    Bioengineering (Basel); 2022 Nov; 9(11):. PubMed ID: 36421088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling forward uncertainty quantification and sensitivity analysis in cardiac electrophysiology by reduced order modeling and machine learning.
    Pagani S; Manzoni A
    Int J Numer Method Biomed Eng; 2021 Jun; 37(6):e3450. PubMed ID: 33599106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of
    Liu M; Liang L; Sun W
    Comput Methods Appl Mech Eng; 2019 Apr; 347():201-217. PubMed ID: 31160830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning.
    Karami M; Lombaert H; Rivest-Hénault D
    Comput Med Imaging Graph; 2023 Mar; 104():102165. PubMed ID: 36599223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.