BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 38322671)

  • 21. Carnosol inhibits the growth and biofilm of Candida albicans.
    Yang L; Sui Y; Zhong L; Ma T; Ma Z; Liu X
    J Mycol Med; 2022 May; 32(2):101234. PubMed ID: 34929524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole.
    Borecká-Melkusová S; Moran GP; Sullivan DJ; Kucharíková S; Chorvát D; Bujdáková H
    Mycoses; 2009 Mar; 52(2):118-28. PubMed ID: 18627475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A small subpopulation of blastospores in candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes.
    Khot PD; Suci PA; Miller RL; Nelson RD; Tyler BJ
    Antimicrob Agents Chemother; 2006 Nov; 50(11):3708-16. PubMed ID: 16966398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro and in vivo activities of pterostilbene against Candida albicans biofilms.
    Li DD; Zhao LX; Mylonakis E; Hu GH; Zou Y; Huang TK; Yan L; Wang Y; Jiang YY
    Antimicrob Agents Chemother; 2014; 58(4):2344-55. PubMed ID: 24514088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanism of fluconazole resistance and pathogenicity attributes of Lebanese Candida albicans hospital isolates.
    Fattouh N; Hdayed D; Geukgeuzian G; Tokajian S; Khalaf RA
    Fungal Genet Biol; 2021 Aug; 153():103575. PubMed ID: 34033880
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Lee HS; Kim Y
    J Microbiol Biotechnol; 2017 Feb; 27(2):395-404. PubMed ID: 28100900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hexyl-Aminolevulinate Ethosomes: a Novel Antibiofilm Agent Targeting Zinc Homeostasis in Candida albicans.
    Wang Y; Long W; Zhang F; Zhang M; Zeng K; Zhu X
    Microbiol Spectr; 2022 Dec; 10(6):e0243822. PubMed ID: 36301105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of the binding of a Helianthus annuus lectin to Candida albicans cell wall on biofilm development and adhesion to host cells.
    Del Rio M; de la Canal L; Pinedo M; Mora-Montes HM; Regente M
    Phytomedicine; 2019 May; 58():152875. PubMed ID: 30884454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms.
    Nailis H; Vandenbosch D; Deforce D; Nelis HJ; Coenye T
    Res Microbiol; 2010 May; 161(4):284-92. PubMed ID: 20170727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unexplored endemic fruit species from Brazil: Antibiofilm properties, insights into mode of action, and systemic toxicity of four Eugenia spp.
    Sardi JC; Freires IA; Lazarini JG; Infante J; de Alencar SM; Rosalen PL
    Microb Pathog; 2017 Apr; 105():280-287. PubMed ID: 28259673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In silico molecular modelling studies and antibiofilm efficacy of shikonin against Candida albicans: mechanistic insight.
    Kaur K; Singh A; Kaur R; Kaur H; Kaur R; Arora S; Bedi N
    Arch Microbiol; 2023 Feb; 205(3):93. PubMed ID: 36800037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation.
    Nett JE; Sanchez H; Cain MT; Ross KM; Andes DR
    Eukaryot Cell; 2011 Dec; 10(12):1660-9. PubMed ID: 21666076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The radish defensins RsAFP1 and RsAFP2 act synergistically with caspofungin against Candida albicans biofilms.
    Vriens K; Cools TL; Harvey PJ; Craik DJ; Braem A; Vleugels J; De Coninck B; Cammue BP; Thevissen K
    Peptides; 2016 Jan; 75():71-9. PubMed ID: 26592804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance.
    Nett J; Lincoln L; Marchillo K; Massey R; Holoyda K; Hoff B; VanHandel M; Andes D
    Antimicrob Agents Chemother; 2007 Feb; 51(2):510-20. PubMed ID: 17130296
    [TBL] [Abstract][Full Text] [Related]  

  • 35. β-Asarone, an active principle of Acorus calamus rhizome, inhibits morphogenesis, biofilm formation and ergosterol biosynthesis in Candida albicans.
    Rajput SB; Karuppayil SM
    Phytomedicine; 2013 Jan; 20(2):139-42. PubMed ID: 23123225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anti-Biofilm Activity of Cocultimycin A against
    Zhu X; Wang A; Zheng Y; Li D; Wei Y; Gan M; Li Y; Si S
    Int J Mol Sci; 2023 Dec; 24(23):. PubMed ID: 38069349
    [No Abstract]   [Full Text] [Related]  

  • 37. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers.
    Zielińska P; Staniszewska M; Bondaryk M; Koronkiewicz M; Urbańczyk-Lipkowska Z
    Eur J Med Chem; 2015 Nov; 105():106-19. PubMed ID: 26479030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emodin Reduces the Activity of (1,3)-
    Janeczko M
    Pol J Microbiol; 2018; 67(4):463-470. PubMed ID: 30550232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antifungal activity of amphotericin B and voriconazole against the biofilms and biofilm-dispersed cells of Candida albicans employing a newly developed in vitro pharmacokinetic model.
    El-Azizi M; Farag N; Khardori N
    Ann Clin Microbiol Antimicrob; 2015 Apr; 14():21. PubMed ID: 25885806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction.
    Wang T; Shi G; Shao J; Wu D; Yan Y; Zhang M; Cui Y; Wang C
    Microb Pathog; 2015 Oct; 87():21-9. PubMed ID: 26169236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.