BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38322728)

  • 1. DCS blood flow index underestimates skeletal muscle perfusion
    Bartlett MF; Oneglia AP; Ricard MD; Siddiqui A; Englund EK; Buckley EM; Hueber DM; Nelson MD
    J Biomed Opt; 2024 Feb; 29(2):020501. PubMed ID: 38322728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies into the determinants of skeletal muscle oxygen consumption: novel insight from near-infrared diffuse correlation spectroscopy.
    Tucker WJ; Rosenberry R; Trojacek D; Chamseddine HH; Arena-Marshall CA; Zhu Y; Wang J; Kellawan JM; Haykowsky MJ; Tian F; Nelson MD
    J Physiol; 2019 Jun; 597(11):2887-2901. PubMed ID: 30982990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epinephrine iontophoresis attenuates changes in skin blood flow and abolishes cutaneous contamination of near-infrared diffuse correlation spectroscopy estimations of muscle perfusion.
    Bartlett MF; Palmero-Canton A; Oneglia AP; Mireles J; Brothers RM; Trowbridge CA; Wilkes D; Nelson MD
    Am J Physiol Regul Integr Comp Physiol; 2023 Mar; 324(3):R368-R380. PubMed ID: 36693173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of cutaneous blood flow on NIR-DCS measures of skeletal muscle blood flow index.
    Bartlett MF; Akins JD; Oneglia AP; Brothers RM; Wilkes D; Nelson MD
    J Appl Physiol (1985); 2021 Sep; 131(3):914-926. PubMed ID: 34264131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffuse correlation spectroscopy and frequency-domain near-infrared spectroscopy for measuring microvascular blood flow in dynamically exercising human muscles.
    Quaresima V; Farzam P; Anderson P; Farzam PY; Wiese D; Carp SA; Ferrari M; Franceschini MA
    J Appl Physiol (1985); 2019 Nov; 127(5):1328-1337. PubMed ID: 31513443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared spectroscopy and indocyanine green derived blood flow index for noninvasive measurement of muscle perfusion during exercise.
    Habazettl H; Athanasopoulos D; Kuebler WM; Wagner H; Roussos C; Wagner PD; Ungruhe J; Zakynthinos S; Vogiatzis I
    J Appl Physiol (1985); 2010 Apr; 108(4):962-7. PubMed ID: 20110542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic differences between macro- and microvascular measures of reactive hyperemia.
    Bartlett MF; Oneglia A; Jaffery M; Manitowabi-Huebner S; Hueber DM; Nelson MD
    J Appl Physiol (1985); 2020 Nov; 129(5):1183-1192. PubMed ID: 32940560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of skeletal muscle oxygen consumption assessed by near-infrared diffuse correlation spectroscopy during incremental handgrip exercise.
    Rosenberry R; Tucker WJ; Haykowsky MJ; Trojacek D; Chamseddine HH; Arena-Marshall CA; Zhu Y; Wang J; Kellawan JM; Tian F; Nelson MD
    J Appl Physiol (1985); 2019 Sep; 127(3):698-706. PubMed ID: 31318612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of changes in tissue optical properties on near-infrared diffuse correlation spectroscopy measures of skeletal muscle blood flow.
    Bartlett MF; Jordan SM; Hueber DM; Nelson MD
    J Appl Physiol (1985); 2021 Apr; 130(4):1183-1195. PubMed ID: 33571054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared diffuse correlation spectroscopy tracks changes in oxygen delivery and utilization during exercise with and without isolated arterial compression.
    Tucker WJ; Rosenberry R; Trojacek D; Sanchez B; Bentley RF; Haykowsky MJ; Tian F; Nelson MD
    Am J Physiol Regul Integr Comp Physiol; 2020 Jan; 318(1):R81-R88. PubMed ID: 31746636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microvascular blood flow during vascular occlusion tests assessed by diffuse correlation spectroscopy.
    Didier KD; Hammer SM; Alexander AM; Caldwell JT; Sutterfield SL; Smith JR; Ade CJ; Barstow TJ
    Exp Physiol; 2020 Jan; 105(1):201-210. PubMed ID: 31713942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared spectroscopy using indocyanine green dye for minimally invasive measurement of respiratory and leg muscle blood flow in patients with COPD.
    Louvaris Z; Habazettl H; Wagner H; Zakynthinos S; Wagner P; Vogiatzis I
    J Appl Physiol (1985); 2018 Sep; 125(3):947-959. PubMed ID: 29927736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid vasodilation within contracted skeletal muscle in humans: new insight from concurrent use of diffuse correlation spectroscopy and Doppler ultrasound.
    Ichinose M; Nakabayashi M; Ono Y
    Am J Physiol Heart Circ Physiol; 2021 Feb; 320(2):H654-H667. PubMed ID: 33337963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leg blood flow and skeletal muscle microvascular perfusion responses to submaximal exercise in peripheral arterial disease.
    Meneses AL; Nam MCY; Bailey TG; Magee R; Golledge J; Hellsten Y; Keske MA; Greaves K; Askew CD
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1425-H1433. PubMed ID: 30095999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle microvascular perfusion responses to cuff occlusion and submaximal exercise assessed by contrast-enhanced ultrasound: The effect of age.
    Meneses AL; Nam MCY; Bailey TG; Anstey C; Golledge J; Keske MA; Greaves K; Askew CD
    Physiol Rep; 2020 Oct; 8(19):e14580. PubMed ID: 33038050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agreement between multiparametric MRI (PIVOT), Doppler ultrasound, and near-infrared spectroscopy-based assessments of skeletal muscle oxygenation and perfusion.
    Luck JC; Sica CT; Blaha C; Cauffman A; Vesek J; Eckenrode J; Stavres J
    Magn Reson Imaging; 2023 Feb; 96():27-37. PubMed ID: 36396004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood flow index using near-infrared spectroscopy and indocyanine green as a minimally invasive tool to assess respiratory muscle blood flow in humans.
    Guenette JA; Henderson WR; Dominelli PB; Querido JS; Brasher PM; Griesdale DE; Boushel R; Sheel AW
    Am J Physiol Regul Integr Comp Physiol; 2011 Apr; 300(4):R984-92. PubMed ID: 21289237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folic acid ingestion improves skeletal muscle blood flow during graded handgrip and plantar flexion exercise in aged humans.
    Romero SA; Gagnon D; Adams AN; Moralez G; Kouda K; Jaffery MF; Cramer MN; Crandall CG
    Am J Physiol Heart Circ Physiol; 2017 Sep; 313(3):H658-H666. PubMed ID: 28667051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a Better Understanding of Muscle Microvascular Perfusion During Exercise in Patients With Peripheral Artery Disease: The Effect of Lower-Limb Revascularization.
    MenĂªses A; Krastins D; Nam M; Bailey T; Quah J; Sankhla V; Lam J; Jha P; Schulze K; O'Donnell J; Magee R; Golledge J; Greaves K; Askew CD
    J Endovasc Ther; 2024 Feb; 31(1):115-125. PubMed ID: 35898156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of exercise training on calf muscle oxygen extraction and blood flow in patients with peripheral artery disease.
    Baker WB; Li Z; Schenkel SS; Chandra M; Busch DR; Englund EK; Schmitz KH; Yodh AG; Floyd TF; Mohler ER
    J Appl Physiol (1985); 2017 Dec; 123(6):1599-1609. PubMed ID: 28982943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.