These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 38322952)

  • 1. Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics.
    Peng T; Lin X; Li L; Huang L; Jiang B; Jia Y
    Heliyon; 2024 Feb; 10(3):e25042. PubMed ID: 38322952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell separation using tilted-angle standing surface acoustic waves.
    Ding X; Peng Z; Lin SC; Geri M; Li S; Li P; Chen Y; Dao M; Suresh S; Huang TJ
    Proc Natl Acad Sci U S A; 2014 Sep; 111(36):12992-7. PubMed ID: 25157150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization Analysis of Particle Separation Parameters for a Standing Surface Acoustic Wave Acoustofluidic Chip.
    Han J; Hu H; Lei Y; Huang Q; Fu C; Gai C; Ning J
    ACS Omega; 2023 Jan; 8(1):311-323. PubMed ID: 36643460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle separation in microfluidics using different modal ultrasonic standing waves.
    Zhang Y; Chen X
    Ultrason Sonochem; 2021 Jul; 75():105603. PubMed ID: 34044322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustofluidic coating of particles and cells.
    Ayan B; Ozcelik A; Bachman H; Tang SY; Xie Y; Wu M; Li P; Huang TJ
    Lab Chip; 2016 Nov; 16(22):4366-4372. PubMed ID: 27754503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D numerical simulation of acoustophoretic motion induced by boundary-driven acoustic streaming in standing surface acoustic wave microfluidics.
    Namnabat MS; Moghimi Zand M; Houshfar E
    Sci Rep; 2021 Jun; 11(1):13326. PubMed ID: 34172758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Particle Separation and Detection System Based on Standing Surface Acoustic Wave and Lensless Imaging.
    Chen J; Huang X; Xu X; Wang R; Wei M; Han W; Cao J; Xuan W; Ge Y; Wang J; Sun L; Luo JK
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2165-2175. PubMed ID: 34951837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Network-Based Optimization of an Acousto Microfluidic System for Submicron Bioparticle Separation.
    Talebjedi B; Heydari M; Taatizadeh E; Tasnim N; Li ITS; Hoorfar M
    Front Bioeng Biotechnol; 2022; 10():878398. PubMed ID: 35519621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Submicron separation of microspheres via travelling surface acoustic waves.
    Destgeer G; Ha BH; Jung JH; Sung HJ
    Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simplified three-dimensional numerical simulation approach for surface acoustic wave tweezers.
    Liu L; Zhou J; Tan K; Zhang H; Yang X; Duan H; Fu Y
    Ultrasonics; 2022 Sep; 125():106797. PubMed ID: 35780714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustofluidic bacteria separation.
    Li S; Ma F; Bachman H; Cameron CE; Zeng X; Huang TJ
    J Micromech Microeng; 2017 Jan; 27(1):. PubMed ID: 28798539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation.
    Soliman AM; Eldosoky MA; Taha TE
    Bioengineering (Basel); 2017 Mar; 4(2):. PubMed ID: 28952506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Study of Particle Separation through Integrated Multi-Stage Surface Acoustic Waves and Modulated Driving Signals.
    Jiang Y; Chen J; Xuan W; Liang Y; Huang X; Cao Z; Sun L; Dong S; Luo J
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase separation of a nonionic surfactant aqueous solution in a standing surface acoustic wave for submicron particle manipulation.
    Zhao L; Niu P; Casals E; Zeng M; Wu C; Yang Y; Sun S; Zheng Z; Wang Z; Ning Y; Duan X; Pang W
    Lab Chip; 2021 Feb; 21(4):660-667. PubMed ID: 33393566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced acoustic resonator dimensions improve focusing efficiency of bacteria and submicron particles.
    Ugawa M; Lee H; Baasch T; Lee M; Kim S; Jeong O; Choi YH; Sohn D; Laurell T; Ota S; Lee S
    Analyst; 2022 Jan; 147(2):274-281. PubMed ID: 34889326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sheathless size-based acoustic particle separation.
    Guldiken R; Jo MC; Gallant ND; Demirci U; Zhe J
    Sensors (Basel); 2012; 12(1):905-22. PubMed ID: 22368502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustofluidic manipulation for submicron to nanoparticles.
    Wei W; Wang Z; Wang B; He X; Wang Y; Bai Y; Yang Q; Pang W; Duan X
    Electrophoresis; 2024 May; ():. PubMed ID: 38794970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration.
    Zhou Y; Ma Z; Ai Y
    Anal Chem; 2020 Oct; 92(19):12795-12800. PubMed ID: 32894949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.