These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38323130)
1. Acclimation of subarctic vegetation to warming and increased cloudiness. Ndah FA; Maljanen M; Kasurinen A; Rinnan R; Michelsen A; Kotilainen T; Kivimäenpää M Plant Environ Interact; 2024 Feb; 5(1):e10130. PubMed ID: 38323130 [TBL] [Abstract][Full Text] [Related]
2. Influence of increased nutrient availability on biogenic volatile organic compound (BVOC) emissions and leaf anatomy of subarctic dwarf shrubs under climate warming and increased cloudiness. Ndah F; Valolahti H; Schollert M; Michelsen A; Rinnan R; Kivimäenpää M Ann Bot; 2022 Mar; 129(4):443-455. PubMed ID: 35029638 [TBL] [Abstract][Full Text] [Related]
3. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community. Bokhorst S; Bjerke JW; Davey MP; Taulavuori K; Taulavuori E; Laine K; Callaghan TV; Phoenix GK Physiol Plant; 2010 Oct; 140(2):128-40. PubMed ID: 20497369 [TBL] [Abstract][Full Text] [Related]
4. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra. Ylänne H; Stark S; Tolvanen A Glob Chang Biol; 2015 Oct; 21(10):3696-711. PubMed ID: 25950664 [TBL] [Abstract][Full Text] [Related]
5. Changes in species abundance after seven years of elevated atmospheric CO Svensson BM; Carlsson BÅ; Melillo JM PeerJ; 2018; 6():e4843. PubMed ID: 29868267 [TBL] [Abstract][Full Text] [Related]
6. Impact of three decades of warming, increased nutrient availability, and increased cloudiness on the fluxes of greenhouse gases and biogenic volatile organic compounds in a subarctic tundra heath. Ndah FA; Michelsen A; Rinnan R; Maljanen M; Mikkonen S; Kivimäenpää M Glob Chang Biol; 2024 Jul; 30(7):e17416. PubMed ID: 38994730 [TBL] [Abstract][Full Text] [Related]
7. Impacts of winter icing events on the growth, phenology and physiology of sub-arctic dwarf shrubs. Preece C; Callaghan TV; Phoenix GK Physiol Plant; 2012 Dec; 146(4):460-72. PubMed ID: 22568724 [TBL] [Abstract][Full Text] [Related]
8. Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline. Anadon-Rosell A; Rixen C; Cherubini P; Wipf S; Hagedorn F; Dawes MA PLoS One; 2014; 9(6):e100577. PubMed ID: 24956273 [TBL] [Abstract][Full Text] [Related]
9. Both seed germination and seedling mortality increase with experimental warming and fertilization in a subarctic tundra. Milbau A; Vandeplas N; Kockelbergh F; Nijs I AoB Plants; 2017 Sep; 9(5):plx040. PubMed ID: 29026511 [TBL] [Abstract][Full Text] [Related]
10. Bioaccumulation of heavy metals and ecophysiological responses to heavy metal stress in selected populations of Vaccinium myrtillus L. and Vaccinium vitis-idaea L. Kandziora-Ciupa M; Nadgórska-Socha A; Barczyk G; Ciepał R Ecotoxicology; 2017 Sep; 26(7):966-980. PubMed ID: 28624857 [TBL] [Abstract][Full Text] [Related]
11. Effects of a warmer climate on seed germination in the subarctic. Milbau A; Graae BJ; Shevtsova A; Nijs I Ann Bot; 2009 Aug; 104(2):287-96. PubMed ID: 19443459 [TBL] [Abstract][Full Text] [Related]
12. Growth and community responses of alpine dwarf shrubs to in situ CO₂ enrichment and soil warming. Dawes MA; Hagedorn F; Zumbrunn T; Handa IT; Hättenschwiler S; Wipf S; Rixen C New Phytol; 2011 Aug; 191(3):806-818. PubMed ID: 21770945 [TBL] [Abstract][Full Text] [Related]
13. Post-fire vegetation succession in the Siberian subarctic tundra over 45 years. Heim RJ; Bucharova A; Brodt L; Kamp J; Rieker D; Soromotin AV; Yurtaev A; Hölzel N Sci Total Environ; 2021 Mar; 760():143425. PubMed ID: 33172629 [TBL] [Abstract][Full Text] [Related]
14. Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming. Schollert M; Kivimäenpää M; Michelsen A; Blok D; Rinnan R Ann Bot; 2017 Feb; 119(3):433-445. PubMed ID: 28064192 [TBL] [Abstract][Full Text] [Related]
15. Airborne heavy metal pollution and its effects on foliar elemental composition of Empetrum hermaphroditum and Vaccinium myrtillus in Sør-Varanger, northern Norway. Uhlig C; Junttila O Environ Pollut; 2001; 114(3):461-9. PubMed ID: 11584644 [TBL] [Abstract][Full Text] [Related]
16. Will borealization of Arctic tundra herbivore communities be driven by climate warming or vegetation change? Speed JDM; Chimal-Ballesteros JA; Martin MD; Barrio IC; Vuorinen KEM; Soininen EM Glob Chang Biol; 2021 Dec; 27(24):6568-6577. PubMed ID: 34592044 [TBL] [Abstract][Full Text] [Related]
17. Enhanced UV-B and elevated CO(2) impacts sub-arctic shrub berry abundance, quality and seed germination. Gwynn-Jones D; Jones AG; Waterhouse A; Winters A; Comont D; Scullion J; Gardias R; Graee BJ; Lee JA; Callaghan TV Ambio; 2012; 41 Suppl 3(Suppl 3):256-68. PubMed ID: 22864699 [TBL] [Abstract][Full Text] [Related]
18. Climate change will cause climatic niche contraction of Vaccinium myrtillus L. and V. vitis-idaea L. in Europe. Puchałka R; Paź-Dyderska S; Woziwoda B; Dyderski MK Sci Total Environ; 2023 Sep; 892():164483. PubMed ID: 37268126 [TBL] [Abstract][Full Text] [Related]
19. Origin of volatile organic compound emissions from subarctic tundra under global warming. Ghirardo A; Lindstein F; Koch K; Buegger F; Schloter M; Albert A; Michelsen A; Winkler JB; Schnitzler JP; Rinnan R Glob Chang Biol; 2020 Mar; 26(3):1908-1925. PubMed ID: 31957145 [TBL] [Abstract][Full Text] [Related]
20. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska. Khorsand Rosa R; Oberbauer SF; Starr G; Parker La Puma I; Pop E; Ahlquist L; Baldwin T Glob Chang Biol; 2015 Dec; 21(12):4520-32. PubMed ID: 26183112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]