These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38323481)

  • 1. Low-Temperature X-ray Microanalysis Sheds New Light on Mineral Nutrition Aspects of Insect Leaf Galling.
    Fernando DR; Green PT; Marshall AT
    Microsc Microanal; 2024 Jul; 30(3):607-618. PubMed ID: 38323481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphometric analysis of young petiole galls on the narrow-leaf cottonwood, Populus angustifolia, by the sugarbeet root aphid, Pemphigus betae.
    Richardson RA; Body M; Warmund MR; Schultz JC; Appel HM
    Protoplasma; 2017 Jan; 254(1):203-216. PubMed ID: 26739691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular ion interactions in two endemic tropical rainforest species of a novel metallophytic tree genus.
    Fernando DR; Marshall AT; Green PT
    Tree Physiol; 2018 Jan; 38(1):119-128. PubMed ID: 28981909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae).
    de Oliveira DC; Isaias RM
    Rev Biol Trop; 2009; 57(1-2):293-302. PubMed ID: 19637708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling.
    Li XQ; Liu YZ; Guo WF; Solanki MK; Yang ZD; Xiang Y; Ma ZC; Wen YG
    Tree Physiol; 2017 Sep; 37(9):1208-1217. PubMed ID: 28938058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant.
    Murakami R; Ushima R; Sugimoto R; Tamaoki D; Karahara I; Hanba Y; Wakasugi T; Tsuchida T
    Sci Rep; 2021 Jun; 11(1):13013. PubMed ID: 34155293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of gall-inducing insects in the high altitude wetland forests in Pernambuco, Northeastern Brazil.
    Santos JC; Almeida-Cortez JS; Fernandes GW
    Braz J Biol; 2011 Feb; 71(1):47-56. PubMed ID: 21437398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp.
    Hearn J; Blaxter M; Schönrogge K; Nieves-Aldrey JL; Pujade-Villar J; Huguet E; Drezen JM; Shorthouse JD; Stone GN
    PLoS Genet; 2019 Nov; 15(11):e1008398. PubMed ID: 31682601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transcriptional landscape of insect galls: psyllid (Hemiptera) gall formation in Hawaiian Metrosideros polymorpha (Myrtaceae).
    Bailey S; Percy DM; Hefer CA; Cronk QC
    BMC Genomics; 2015 Nov; 16():943. PubMed ID: 26572921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in clonal poplar leaf chemistry caused by stem galls alter herbivory and leaf litter decomposition.
    Künkler N; Brandl R; Brändle M
    PLoS One; 2013; 8(11):e79994. PubMed ID: 24260333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant.
    Giron D; Huguet E; Stone GN; Body M
    J Insect Physiol; 2016 Jan; 84():70-89. PubMed ID: 26723843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls.
    Rand K; Bar E; Ari MB; Davidovich-Rikanati R; Dudareva N; Inbar M; Lewinsohn E
    J Chem Ecol; 2017 Feb; 43(2):143-152. PubMed ID: 28108840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of genetic variability and habitat of Qualea parviflora (Vochysiaceae) on herbivory by free-feeding and gall-forming insects.
    Gonçalves-Alvim SJ; Collevatti RG; Fernandes GW
    Ann Bot; 2004 Aug; 94(2):259-68. PubMed ID: 15234928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf-derived cecidomyiid galls are sinks in Machilus thunbergii (Lauraceae) leaves.
    Huang MY; Huang WD; Chou HM; Lin KH; Chen CC; Chen PJ; Chang YT; Yang CM
    Physiol Plant; 2014 Nov; 152(3):475-85. PubMed ID: 24621096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical responses of chestnut oak to a galling cynipid.
    Allison SD; Schultz JC
    J Chem Ecol; 2005 Jan; 31(1):151-66. PubMed ID: 15839487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronism between Aspidosperma macrocarpon (Apocynaceae) resources allocation and the establishment of the gall inducer Pseudophacopteron sp. (Hemiptera: Psylloidea).
    Castro AC; Oliveira DC; Moreira AS; lsaias RM
    Rev Biol Trop; 2013 Dec; 61(4):1891-900. PubMed ID: 24432541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eavesdropping on gall-plant interactions: the importance of the signaling function of induced volatiles.
    Barônio GJ; Oliveira DC
    Plant Signal Behav; 2019; 14(11):1665454. PubMed ID: 31538533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress Regarding the Molecular Aspects of Insect Gall Formation.
    Takeda S; Hirano T; Ohshima I; Sato MH
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gall induction may benefit host plant: a case of a gall wasp and eucalyptus tree.
    Rocha S; Branco M; Boas LV; Almeida MH; Protasov A; Mendel Z
    Tree Physiol; 2013 Apr; 33(4):388-97. PubMed ID: 23513035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel family of secreted insect proteins linked to plant gall development.
    Korgaonkar A; Han C; Lemire AL; Siwanowicz I; Bennouna D; Kopec RE; Andolfatto P; Shigenobu S; Stern DL
    Curr Biol; 2021 May; 31(9):1836-1849.e12. PubMed ID: 33657407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.