These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38323677)

  • 1. The probability of edge existence due to node degree: a baseline for network-based predictions.
    Zietz M; Himmelstein DS; Kloster K; Williams C; Nagle MW; Greene CS
    Gigascience; 2024 Jan; 13():. PubMed ID: 38323677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The probability of edge existence due to node degree: a baseline for network-based predictions.
    Zietz M; Himmelstein DS; Kloster K; Williams C; Nagle MW; Greene CS
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hetnet connectivity search provides rapid insights into how biomedical entities are related.
    Himmelstein DS; Zietz M; Rubinetti V; Kloster K; Heil BJ; Alquaddoomi F; Hu D; Nicholson DN; Hao Y; Sullivan BD; Nagle MW; Greene CS
    Gigascience; 2022 Dec; 12():. PubMed ID: 37503959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NetTDP: permutation-based true discovery proportions for differential co-expression network analysis.
    Cai M; Vesely A; Chen X; Li L; Goeman JJ
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36209415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches.
    Crichton G; Guo Y; Pyysalo S; Korhonen A
    BMC Bioinformatics; 2018 May; 19(1):176. PubMed ID: 29783926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Edge removal balances preferential attachment and triad closing.
    Brot H; Honig M; Muchnik L; Goldenberg J; Louzoun Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042815. PubMed ID: 24229233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probabilistic graphlets capture biological function in probabilistic molecular networks.
    Doria-Belenguer S; Youssef MK; Böttcher R; Malod-Dognin N; Pržulj N
    Bioinformatics; 2020 Dec; 36(Suppl_2):i804-i812. PubMed ID: 33381834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Node similarity-based graph convolution for link prediction in biological networks.
    Coşkun M; Koyutürk M
    Bioinformatics; 2021 Dec; 37(23):4501-4508. PubMed ID: 34152393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. edge2vec: Representation learning using edge semantics for biomedical knowledge discovery.
    Gao Z; Fu G; Ouyang C; Tsutsui S; Liu X; Yang J; Gessner C; Foote B; Wild D; Ding Y; Yu Q
    BMC Bioinformatics; 2019 Jun; 20(1):306. PubMed ID: 31238875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated Genes.
    Himmelstein DS; Baranzini SE
    PLoS Comput Biol; 2015 Jul; 11(7):e1004259. PubMed ID: 26158728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modularity and anti-modularity in networks with arbitrary degree distribution.
    Hintze A; Adami C
    Biol Direct; 2010 May; 5():32. PubMed ID: 20459629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical analysis of edges and bredges in configuration model networks.
    Bonneau H; Biham O; Kühn R; Katzav E
    Phys Rev E; 2020 Jul; 102(1-1):012314. PubMed ID: 32794990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-scale enzymatic reaction prediction by variational graph autoencoders.
    Wang C; Yuan C; Wang Y; Chen R; Shi Y; Patti GJ; Hou Q
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient rewirings for enhancing synchronizability of dynamical networks.
    Rad AA; Jalili M; Hasler M
    Chaos; 2008 Sep; 18(3):037104. PubMed ID: 19045478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MultiDTI: drug-target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network.
    Zhou D; Xu Z; Li W; Xie X; Peng S
    Bioinformatics; 2021 Dec; 37(23):4485-4492. PubMed ID: 34180970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MultiVERSE: a multiplex and multiplex-heterogeneous network embedding approach.
    Pio-Lopez L; Valdeolivas A; Tichit L; Remy É; Baudot A
    Sci Rep; 2021 Apr; 11(1):8794. PubMed ID: 33888761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equal opportunity for low-degree network nodes: a PageRank-based method for protein target identification in metabolic graphs.
    Bánky D; Iván G; Grolmusz V
    PLoS One; 2013; 8(1):e54204. PubMed ID: 23382878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-embedding of edges and nodes with deep graph convolutional neural networks.
    Zhou Y; Huo H; Hou Z; Bu L; Mao J; Wang Y; Lv X; Bu F
    Sci Rep; 2023 Oct; 13(1):16966. PubMed ID: 37807013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.